Loading



Results 1-10 of 2444 1 2 3 4 5 > >> 

Black Box Explains...Ethernet hubs vs. Ethernet switches.

Although hubs and switches look very similar and are connected to the network in much the same way, there is a significant difference in the way they function.

What is a... more/see it nowhub?
An Ethernet hub is the basic building block of a twisted-pair (10BASE-T or 100BASE-TX) Ethernet network. Hubs do little more than act as a physical connection. They link PCs and peripherals and enable them to communicate over a network. All data coming into the hub travels to all stations connected to the hub. Because a hub doesn’t use management or addressing, it simply divides the 10- or 100-Mbps bandwidth among users. If two stations are transferring high volumes of data between them, the network performance of all stations on that hub will suffer. Hubs are good choices for small- or home-office networks, particularly if bandwidth concerns are minimal.

What is a switch?
An Ethernet switch, on the other hand, provides a central connection in an Ethernet network in which each connected device has its own dedicated link with full bandwidth. Switches divide LAN data into smaller, easier-to-manage segments and send data only to the PCs it needs to reach. They allot a full 10 or 100 Mbps to each user with addressing and management features. As a result, every port on the switch represents a dedicated 10- or 100-Mbps pathway. Because users connected to a switch do not have to share bandwidth, a switch offers relief from the network congestion a shared hub can cause.

What to consider when selecting an Ethernet hub:
• Stackability. Select a stackable hub connected with a special cable so you can start with one hub and add others as you need more ports. The entire stack functions as one device.
• Manageability. Choose an SNMP-manageable hub if you have a large, managed network.

What to consider when selecting an Ethernet switch:
• Manageability. Ethernet switches intended for large managed networks feature built-in management, usually SNMP.
• OSI Layer operation. Most Ethernet switches operate at “Layer 2,” which is for the physical network addresses (MAC addresses). Layer 3 switches use network addresses, and incorporate routing functions to actively calculate the best way to send a packet to its destination. Very advanced Ethernet switches, often known as routing switches, operate on OSI Layer 4 and route network traffic according to the application.
• Modular construction. A modular switch enables you to populate a chassis with modules of different speeds and media types. Because you can easily change modules, the modular switch is an adaptable solution for large, growing networks.
• Stackability. Some Ethernet switches can be connected to form a stack of two or more switches that functions as a single network device. This enables you to start with fewer ports and add them as your network grows. collapse


Black Box Explains...Insertion loss.

Insertion loss is a power loss that results from inserting a component into a previously continuous path or creating a splice in it. It is measured by the amount of... more/see it nowpower received before and after the insertion.

In copper cable, insertion loss measures electrical power lost from the beginning of the run to the end.

In fiber cable, insertion loss (also called optical loss) measures the amount of light lost from beginning to end. Light can be lost many ways: absorption, diffusion, scattering, dispersion, and more. It can also be from poor connections and splices in which the fibers don’t align properly.

Light loss is measured in decibels (dBs), which indicate relative power. A loss of 10 dB means a tenfold reduction in power.

Light strength can be measured with optical power meters, optical loss test sets, and other test sets that send a known light source through the fiber and measure its strength on the other end. collapse


Black Box Explains...Cable management.

Corporate networks are complex systems of PCs, servers, printers, and the devices that connect them. Getting everything to work in harmony requires bundles of cables, and managing all those cables... more/see it nowfrom inside a telecommunications closet can be a daunting task. To connect cable bundles to rackmounted equipment (like patch panels, hubs, switches, or routers), you need to direct the bundles overhead, vertically, and horizontally.

A popular choice for overhead cable routing is a ladder rack. Ladder racks come in many varieties. They can run along a wall supported by brackets or they can be installed overhead and supported by a threaded rod. Ladder racks can support large cable bundles neatly and safely. Because bundles lie flat on a ladder rack, cables aren’t subjected to harsh bends. You can run ladder racks directly to the top of most standard telecommunications racks that conform to TIA/EIA standards.

Use vertical cable managers to route cable bundles along the sides of a rack. These “cable troughs” as they’re sometimes called can be single sided—or double sided to route cable bundles to the rear of equipment and to the ports on the front as well. Vertical cable managers usually come with some type of protection for the cable, such as grommeted holes to protect the cable jacket or a cover that may clip on or act as a door.

Horizontal cable managers are usually a series of rings that directs cables in an orderly fashion toward the ports of hubs, switches, and patch panels. collapse


Black Box Explains...DIN rail usage.

DIN rail is an industry-standard metal rail, usually installed inside an electrical enclosure, which serves as a mount for small electrical devices specially designed for use with DIN rails. These... more/see it nowdevices snap right onto the rails, sometimes requiring a set screw, and are then wired together.

Many different devices are available for mounting on DIN rails: terminal blocks, interface converters, media converter switches, repeaters, surge protectors, PLCs, fuses, or power supplies, just to name a few.

DIN rails are a space-saving way to accommodate components. And because DIN rail devices are so easy to install, replace, maintain, and inspect, this is an exceptionally convenient system that has become very popular in recent years.

A standard DIN rail is 35 mm wide with raised-lip edges, its dimensions outlined by the Deutsche Institut für Normung, a German standardization body. Rails are generally available in aluminum or steel and may be cut for installation. Depending on the requirements of the mounted components, the rail may need to be grounded. collapse


Black Box Explains...Advantages of fiber optic line drivers.

Fiber optic line drivers are much better for communications than copper-wire alternatives because they offer three main advantages: superior conductivity, freedom from interference, and security.

Superior conductivity for increased performance
The glass... more/see it nowcore of a fiber optic cable is an excellent signal conductor. With proper splices and terminations, fiber cable yields very low signal loss and can easily support data rates of 100 Mbps or more.

Immunity to electrical interference
Because fiber optic line drivers use a nonmetallic conductor, they don’t pick up or emit electromagnetic or radio-frequency interference (EMI/RFI). Crosstalk (interference from an adjacent communication channel) is also eliminated, which increases transmission quality.

Signals transmitted via fiber optic line drivers aren’t susceptible to any form of external frequency-related interference. That makes fiber connections completely immune to damaging power surges, signal distortions from nearby lightning strikes, and high-voltage interference. Because fiber cable doesn’t conduct electricity, it can’t create electrical problems in your equipment.

Signal security
Electronic eavesdropping requires the ability to intercept and monitor the electromagnetic frequencies of signals traveling over a copper data wire. Fiber optic line drivers use a light-based transmission medium, so they’re completely immune to electronic bugging. collapse


Black Box Explains...DIN rail.

DIN rail is an industry-standard metal rail, usually installed inside an electrical enclosure, which serves as a mount for small electrical devices specially designed for use with DIN rails. These... more/see it nowdevices snap right onto the rails, sometimes requiring a set screw, and are then wired together.

Many different devices are available for mounting on DIN rails: terminal blocks, interface converters, media converter switches, repeaters, surge protectors, PLCs, fuses, or power supplies, just to name a few.

DIN rails are a space-saving way to accommodate components. And because DIN rail devices are so easy to install, replace, maintain, and inspect, this is an exceptionally convenient system that has become very popular in recent years.

A standard DIN rail is 35 mm wide with raised-lip edges, its dimensions outlined by the Deutsche Institut für Normung, a German standardization body. Rails are generally available in aluminum or steel and may be cut for installation. Depending on the requirements of the mounted components, the rail may need to be grounded. collapse


Black Box Explains...Electronic vs. manual switches.

What’s the difference between electronic and manual switches? Are the benefits of electronic switches worth the price increase over manual switches?

As you might imagine, the inner workings of manual switches... more/see it noware far simpler than those of electronic switches. When you turn the dial of a manual switch, internal connections are physically moved. This is great for less complex applications, but it can cause voltage spikes that can damage particularly sensitive equipment such as laser printers.

Because electronic switches do their switching with solid-state components, you have more control in advanced applications. For example, our AC-powered, code-operated, and fallback switches offer numerous options for out-of-band management of critical network resources. They give you the remote control your operation may need. You can control your high-end applications and sensitive equipment via computer, modem, or even touch-tone phone—a convenience simply not available with manual switches. collapse


Black Box Explains...DIN rails.

A DIN rail is an industry-standard metal rail, usually installed inside an electrical enclosure, which serves as a mount for small electrical devices specially designed for use with DIN rails.... more/see it nowThese devices snap right onto the rails, sometimes requiring a set screw, and are then wired together.

Many different devices are available for mounting on DIN rails: terminal blocks, interface converters, media converter switches, repeaters, surge protectors, PLCs, fuses, or power supplies, just to name a few.

DIN rails are a space-saving way to accommodate components. And because DIN rail devices are so easy to install, replace, maintain, and inspect, this is an exceptionally convenient system that has become very popular in recent years.

A standard DIN rail is 35-mm wide with raised-lip edges, its dimensions outlined by the Deutsche Institut für Normung, a German standardization body. Rails are generally available in aluminum or steel and may be cut for installation. Depending on the requirements of the mounted components, the rail may need to be grounded. collapse


Black Box Explains...The fully accessorized rack.

After you choose your rack, consider how you’ll set it up and what accessories you might need.

Your rack may need to be secured. A typical rack has about a... more/see it now15"-deep base, providing some stability, but not enough to prevent the rack from tipping if heavy objects are mounted on it. To solve this problem, most rack bases can be bolted to the floor.

You also need to decide how to accommodate standalone equipment, which is not actually rackmounted or bolted to the rack. You can place small devices on a cantilevered shelf such as the RM001, however, you should place heavier items such as monitors on a center-weight shelf such as the RM377.

Small extras, such as Patch Panel Hinge Kits, can make your job easier. These hinges enable you to access the back of a patch panel simply by swinging it out from the rack. They’re particularly useful for racks in hard-to-reach areas.

If you need to mount both 19" and 23" equipment in the same rack, use a 23" rack with 23"-to-19" Rackmount Adapters to fit the 19" devices.

For a neater appearance, you can cover unused spaces in a rack with Filler Panels.

Cable management is also an important consideration. Our Horizontal and Vertical Cable Managers help you to route cables along the sides of racks, between racks, and to the rackmounted equipment. collapse

  • Pdf Drawing... 
  • Fiber Optic Adapter (ST%X96SC Rectangular Mounting) PDF Drawing
    PDF Drawing for the FOT113
 
Results 1-10 of 2444 1 2 3 4 5 > >> 
Close

Support

Delivering superior technical support is our highest priority. Depending on the products or services we provide for you, please visit your appropriate support area.



 

You have added this item to your cart.

Important message about your cart:

You requested more of "" than the currently available. The quantity has been changed to them maximum quantity available. View your cart.

Print
Black Box 1-877-877-2269 Black Box Network Services