Loading


Categories (x) > Digital Signage > A/V Cables (x)

Results 11-20 of 26 < 1 2 3 > 
  • Pdf Drawing... 
  • VGA Splitter Cable PDF Drawing
    PDF Drawing for EVN21VGA (Version 1)
 

Black Box Explains…Digital Visual Interface (DVI) connectors.

The DVI (Digital Video Interface) technology is the standard digital transfer medium for computers while the HDMI interface is more commonly found on HDTVs, and other high-end displays.

The Digital... more/see it nowVisual Interface (DVI) standard is based on transition-minimized differential signaling (TMDS). There are two DVI formats: Single-Link and Dual-Link. Single-link cables use one TMDS-165 MHz transmitter and dual-link cables use two. The dual-link cables double the power of the transmission. A single-link cable can transmit a resolution ?of 1920 x 1200 vs. 2560 x 1600 for a dual-link cable.

There are several types of connectors: ?DVI-D, DVI-I, DVI-A, DFP, and EVC.

  • DVI-D is a digital-only connector for use between a digital video source and monitors. DVI-D eliminates analog conversion and improves the display. It can be used when one or both connections are DVI-D.
  • DVI-I (integrated) supports both digital and analog RGB connections. It can transmit either a digital-to-digital signals or an analog-to-analog signal. It is used by some manufacturers on products instead of separate analog and digital connectors. If both connectors are DVI-I, you can use any DVI cable, but a DVI-I is recommended.
  • DVI-A (analog) is used to carry an DVI signal from a computer to an analog VGA device, such as a display. If one or both of your connections are DVI-A, use this cable. ?If one connection is DVI and the other is ?VGA HD15, you need a cable or adapter ?with both connectors.
  • DFP (Digital Flat Panel) was an early digital-only connector used on some displays.
  • EVC (also known as P&D, for ?Plug & Display), another older connector, handles digital and analog connections.
  • collapse


    Black Box Explains...Component video.

    Traditional Composite video standards—NTSC, PAL, or SECAM—combine luminance (brightness), chrominance (color), blanking pulses, sync pulses, and color burst information into a single signal.

    Another video standard—S-Video—separates luminance from chrominance to provide... more/see it nowsome improvement in video quality.

    But there’s a new kind of video called Component video appearing in many high-end video devices such as TVs and DVD players. Component video is an advanced digital format that separates chrominance, luminance, and synchronization into separate signals. It provides images with higher resolution and better color quality than either traditional Composite video or S-Video. There are two kinds of Component video: Y-Cb-Cr and Y-Pb-Pr. Y-Cb-Cr is often used by high-end DVD players. HDTV decoders typically use the Y-Pb-Pr Component video signal.

    Many of today’s high-end video devices such as plasma televisions and DVD players actually have three sets of video connectors: Composite, S-Video, and Component. The easiest way to improve picture quality on your high-end TV is to simply connect it using the Component video connectors rather than the Composite or S-Video connectors. Using the Component video connection enables your TV to make use of the full range of video signals provided by your DVD player or cable box, giving you a sharper image and truer colors.

    To use the Component video built into your video devices, all you need is the right cable. A Component video cable has three color-coded BNC connections at each end. For best image quality, choose a high-quality cable with adequate shielding and gold-plated connectors. collapse



    DisplayPort cable.

    DisplayPort is a digital video interface that was designed by the Video Electronics Standards Association (VESA) in 2006 and has been produced since 2008. It competes directly with HDMI®. Unlike... more/see it nowHDMI, however, DisplayPort is an open standard with no royalties.

    This digital interface is used primarily between a computer and a monitor or a high-definition television and is built into many computer chipsets produced today. It’s incredibly versatile, with the capability to deliver digital video, audio, bidirectional communications, and accessory power over a single connector.

    DisplayPort v1.1 supports a maximum of 10.8 Gbps over a 2-meter cable; v1.2 supports up to 21.6 Gbps. DisplayPort v1.2 also enables you to daisychain up to four monitors with only a single output cable. It also offers the future promise of DisplayPort Hubs that would operate much like a USB hub.

    The standard DisplayPort connector is very compact and features latches that don’t add to the connector’s size. Unlike HDMI, a DisplayPort connector is easily lockable with a pinch-down locking hood, so it can't be easily dislodged. However, a quick squeeze of the connector releases the latch.

    DisplayPort supports cable lengths of up to 15 meters with maximum resolutions at cable lengths up to 3 meters. Bidirectional signaling enables DisplayPort to both send and receive data from an attached device.

    With the proper adapters, DisplayPort cable can carry DVI and HDMI signals, although this doesn’t work the other way around—DVI and HDMI cable can’t carry DisplayPort. Because DisplayPort can provide power to attached devices, DisplayPort to HDMI or DVI adapters don’t need a separate power supply.

    The Mini DisplayPort (MiniDP or mDP) is a miniatured version of the DisplayPort interface. It carries both digital and analog computer video and audio signals. Apple® introduced the Mini DisplayPort connector in 2008 and it is now on all new Mac® computers. It is also being used in newer PC notebooks. This small form factor connector fully supports the VESA DisplayPort protocol. It is particularly useful on systems where space is at a premium, such as laptops, or to support multiple connectors on reduced height add-in cards.

    collapse


    Product Data Sheets (pdf)...RapidRun Modular Audio/Video Cabling System


    Black Box Explains...Upgrading from VGA to DVI video.

    Many new PCs no longer have traditional Cathode Ray Tube (CRT) computer monitors with a VGA interface. The latest high-end computers have Digital Flat Panels (DFPs) with a Digital Visual... more/see it nowInterface (DVI). Although most computers still have traditional monitors, the newer DFPs are coming on strong because flat-panel displays are not only slimmer and more attractive on the desktop, but they’re also capable of providing a much sharper, clearer image than a traditional CRT monitor.

    The VGA interface was developed to support traditional CRT monitors. The DVI interface, on the other hand, is designed specifically for digital displays and supports the high resolution, the sharper image detail, and the brighter and truer colors achieved with DFPs.

    Most flat-panel displays can be connected to a VGA interface, even though using this interface results in inferior video quality. VGA simply can’t support the image quality offered by a high-end digital monitor. Sadly, because a VGA connection is possible, many computer users connect their DFPs to VGA and never experience the stunning clarity their flat-panel monitors can provide.

    It’s important to remember that for your new DFP display to work at its best, it must be connected to a DVI video interface. You should upgrade the video card in your PC when you buy your new video monitor. Your KVM switches should also support DVI if you plan to use them with DFPs. collapse


    Black Box Explains...Gold plating.

    Get premium-quality connectors from Black Box. The 24-karat gold plating ensures better signal transmission and no corrosion. The shielding and heavy gold conductors provide improved performance.


    Black Box Explains... Speaker wire gauge.

    Wire gauge (often shown as AWG, for American Wire Gauge) is a measure of the thickness of the wire. The more a wire is drawn or sized, the smaller its... more/see it nowdiameter will be. The lower the wire gauge, the thicker the wire.

    For example, a 24 AWG wire is thinner than a 14 AWG wire. A lower AWG means longer transmission distance and better integrity. As a rule of thumb, power loss decreases as the wire size increases.

    When it comes to choosing speaker cable, consider a few factors: distance, the type of system and amplifier you have, the frequencies of the signals being handled, and any specifications that the speaker manufacturer recommends.

    For most home applications where you simply need to run cable from your stereo to speakers in the same room—or even behind the walls to other rooms—16 AWG cable is usually fine.

    If you’re considering runs of more than 40 feet (12.1 m), consider using 14 AWG or even 12 AWG cable. They both offer better transmission and less resistance over longer distances. You should probably choose 12 AWG cable for high-end audio systems with higher power output or for low-frequency subwoofers. As a rule of thumb, power loss decreases as the wire size increases.

    To terminate your cable, choose gold connectors. Because gold resists oxidation over time, gold connectors wear better and offer better peformance than other connectors do. collapse


    Product Data Sheets (pdf)...VGA Video Cable

    Results 11-20 of 26 < 1 2 3 > 
    Close

    Support

    Delivering superior technical support is our highest priority. Depending on the products or services we provide for you, please visit your appropriate support area.



     
    Print
    Black Box 1-877-877-2269 Black Box Network Services