Loading


Categories (x) > Datacom (x)
Content Type (x) > Black Box Explains (x)

Results 41-49 of 49 < 1 2 3 4 5 

Black Box Explains...How a line driver operates.

Driving data? Better check the transmission.

Line drivers can operate in any of four transmission modes: 4-wire full-duplex, 2-wire full-duplex, 4-wire half-duplex, and 2-wire half-duplex. In fact, most models support more... more/see it nowthan one type of operation.

So how do you know which line driver to use in your application?

The deal with duplexing.
First you must decide if you need half- or full-duplex transmission. In half-duplex transmission, voice or data signals are transmitted in only one direction at a time, In full-duplex operation, voice or data signals are transmitted in both directions at the same time. In both scenarios, the communications path support the full data rate.

The entire bandwidth is available for your transmission in half-duplex mode. In full-duplex mode, however, the bandwidth must be split in two because data travels in both directions simultaneously.

Two wires or not two wires? That is the question.
The second consideration you have is the type of twisted-pair cable you need to complete your data transmissions. Generally you need twisted-pair cable with either two or four wires. Often the type of cabling that’s already installed in a building dictates what kind of a line driver you use. For example, if two twisted pairs of UTP cabling are available, you can use a line driver that operates in 4-wire applications, such as the Short-Haul Modem-B Async or the Line Driver-Dual Handshake models. Otherwise, you might choose a line driver that works for 2-wire applications, such as the Short-Haul Modem-B 2W or the Async 2-Wire Short-Haul Modem.

If you have the capabilities to support both 2- and 4-wire operation in half- or full-duplex mode, we even offer line drivers that support all four types of operation.

As always, if you’re still unsure which operational mode will work for your particular applications, consult our Technical Support experts and they’ll help you make your decision. collapse


Black Box Explains...UARTs at a glance.

Universal Asynchronous Receiver/Transmitters (UARTs) are integrated circuits that convert bytes from the computer bus into serial bits for transmission. By providing surplus memory in a buffer, UARTs help applications overcome... more/see it nowthe factors that can hinder system performance, providing maximum throughput to high-performance peripherals without slowing down CPUs.

Early UARTs such as 8250 and 16450 did not include buffering (RAM or memory). With the advent of higher-speed devices, the need for UARTs that could handle more data became critical. The first buffered UART was the 16550, which incorporates a 16-byte First In First Out (FIFO) buffer and provides greater throughput than its predecessors.

Manufacturers have been developing enhanced UARTs that continue to increase performance standards. These faster chips provide improvements such as larger buffers and increased speeds. Here are the rates of today’s common UARTs:

UART FIFO Buffer Rate Supported
16550 16-byte 115.2 kbps
16554 16-byte 115.2 kbps
16650 32-byte 460.8 kbps (burst rate)
16654 64-byte 460.8 kbps (burst rate)
16750 64-byte 460.8 kbps (burst rate)
16850 128-byte 460.8 kbps (sustained rate)
16854 128-byte 460.8 kbps (sustained rate) collapse


Black Box Explains... Single-Mode Fiber Optic Cable

Multimode fiber cable has multiple modes of propagation—that is, several wavelengths of light are normally used in the fiber core. In contrast, single-mode fiber cable has only one mode of... more/see it nowpropagation: a single wavelength of light in the fiber core. This means there’s no interference or overlap between the different wavelengths of light to garble your data over long distances like there is with multimode cable.

What does this get you? Distance–up to 50 times more distance than multimode fiber cable. You can also get higher bandwidth. You can use a pair of single-mode fiber strands full-duplex for up to twice the throughput of multimode fiber cable. The actual speed and distance you get will vary with the devices used with the single-mode fiber. collapse


Black Box Explains...How computer speeds are enhanced with PCI buses and UARTs.

The Peripheral Component Interconnect (PCI®) Bus enhances both speed and throughput. The PCI Local Bus is a high-performance bus that provides a processor-independent data path between the CPU and high-speed... more/see it nowperipherals. PCI is a robust interconnect interface designed specifically to accommodate multiple high-performance peripherals for graphics, full-motion video, SCSI, and LANs.

UARTs (Universal Asynchronous Receiver/ Transmitters) are integrated circuits that convert bytes from the computer bus into serial bits for transmission. By providing surplus memory in a buffer, UARTs help your applications overcome the factors that slow down your system. collapse


Black Box Explains... Buffers

A buffer (also called a spooler or a cache) is a temporary storage device used to share printers and compensate for a difference in speed and data flow between two... more/see it nowdevices. Buffers use RAM (Random-Access Memory) to take in data and hold it until the receiving device handles it.

A buffer serving a computer can be installed either internally or externally. Internal computer buffers are common in the forms of keyboard inputs, data caches, and video memory. An external buffer is usually used for printing.

An external buffer downloads jobs to the printer, freeing the computer so you can get back to work sooner.

A print buffer’s ports can be serial, parallel, or serial and parallel. Because a buffer’s ports operate independently of each other, a buffer also can be made to perform serial-to-parallel or parallel-to-serial conversion or to change the word structure and/or serial data rate (baud rate) of the data.

While most buffers are FIFO (First In, First Out), some advanced units can function as random-access buffers. For most serial buffers, hardware flow control is required, but some also support software (X-ON/X-OFF) control. Most buffers support printing of multiple copies of a document, provided the buffer has enough memory to store the entire print job. collapse


Black Box Explains...Terminal Servers

A terminal server (sometimes called a serial server) is a hardware device that enables you to connect serial devices across a network.

Terminal servers acquired their name because they were originally... more/see it nowused for long-distance connection of dumb terminals to large mainframe systems such as VAX™. Today, the name terminal server refers to a device that connects any serial device to a network, usually Ethernet. In this day of network-ready devices, terminal servers are not as common as they used to be, but they’re still frequently used for applications such as remote connection of PLCs, sensors, or automatic teller machines.

The primary advantage of terminal servers is that they save you the cost of running separate RS-232 devices. By using a network, you can connect serial devices even over very long distances—as far as your network stretches. It’s even possible to connect serial devices across the Internet. A terminal server connects the remote serial device to the network, and then another terminal server somewhere else on the network connects to the other serial device.

Terminal servers act as virtual serial ports by providing the appropriate connectors for serial data and also by grouping serial data in both directions into Ethernet TCP/IP packets. This conversion enables you to connect serial devices across Ethernet without the need for software changes.

Because terminal servers send data across a network, security is a consideration. If your network is isolated, you can get by with an inexpensive terminal server that has few or no security functions. If, however, you’re using a terminal server to make network connections across a network that’s also an Internet subnet, you should look for a terminal server that offers extensive security features. collapse


Black Box Explains...V.35, the Faster Serial Interface.

V.35 is the ITU (formerly CCITT) standard termed “Data Transmission at 48 kbps Using 60–108 KHz Group-Band Circuits.“

Basically, V.35 is a high-speed serial interface designed to support both higher data... more/see it nowrates and connectivity between DTEs (data-terminal equipment) or DCEs (data-communication equipment) over digital lines.

Recognizable by its blocky, 34-pin connector, V.35 combines the bandwidth of several telephone circuits to provide the high-speed interface between a DTE or DCE and a CSU/DSU (Channel Service Unit/Data Service Unit).

Although it’s commonly used to support speeds ranging anywhere from 48 to 64 kbps, much higher rates are possible. For instance, maximum V.35 cable distances can theoretically range up to 4000 feet (1200 m) at speeds up to 100 kbps. Actual distances will depend on your equipment and cable.

To achieve such high speeds and great distances, V.35 combines both balanced and unbalanced voltage signals on the same interface. collapse


Black Box Explains...DIN rail.

DIN rail is an industry-standard metal rail, usually installed inside an electrical enclosure, which serves as a mount for small electrical devices specially designed for use with DIN rails. These... more/see it nowdevices snap right onto the rails, sometimes requiring a set screw, and are then wired together.

Many different devices are available for mounting on DIN rails: terminal blocks, interface converters, media converter switches, repeaters, surge protectors, PLCs, fuses, or power supplies, just to name a few.

DIN rails are a space-saving way to accommodate components. And because DIN rail devices are so easy to install, replace, maintain, and inspect, this is an exceptionally convenient system that has become very popular in recent years.

A standard DIN rail is 35 mm wide with raised-lip edges, its dimensions outlined by the Deutsche Institut für Normung, a German standardization body. Rails are generally available in aluminum or steel and may be cut for installation. Depending on the requirements of the mounted components, the rail may need to be grounded. collapse


Black Box Explains...Types of KVM switches.

Black Box has the keyboard/video switches you need to share one CPU between several workstations or to control several CPUs from one monitor and keyboard.

If you do a lot of... more/see it nowswitching, you need premium switches—our top-of-the-line ServSwitch™ KVM switches give you the most reliable connections for the amount of KVM equipment supported. With ServSwitch KVM switches, you can manage as many CPUs as you want from just one workstation, and you can access any server in any computer room from any workstation. Eliminating needless equipment not only saves you money, it also gives you more space and less clutter. Plus, you can switch between PCs, Sun®, and Mac® CPUs. ServSwitch KVM switches can also cut your electricity and cooling costs because by sharing monitors, you use less power and generate less heat.

If your switching demands are very minor, you may not need products as advanced as ServSwitch. Black Box offers switches to fill less demanding needs. Most of these are manual switches or basic electronic switches, which don’t have the sophisticated emulation technology used by the ServSwitch.

For PCs with PS/2® keyboards, try our Keyboard/Video Switches. They send keyboard signals, so your CPUs boot up as though they each have their own keyboard.

With the RS/6000™ KVM Switch, you can run up to six RS/6000 servers from one workstation. Our Keyboard/ Video Switch for Mac enables you to control up to two Mac CPUs from one keyboard and monitor.

With BLACK BOX® KVM Switches, you can share a workstation with two or four CPUs. They’re available in IBM® PC and Sun Workstation® configurations.

You’ll also find that our long-life manual Keyboard/Video Switches are perfect for basic switching applications. collapse

Results 41-49 of 49 < 1 2 3 4 5 
Close

Support

Delivering superior technical support is our highest priority. Depending on the products or services we provide for you, please visit your appropriate support area.



 

You have added this item to your cart.

Print
Black Box 1-877-877-2269 Black Box Network Services