Loading


Categories (x) > Datacom (x)
Content Type (x) > Black Box Explains (x)

Results 41-49 of 49 < 1 2 3 4 5 

Black Box Explains...USB 2.0 and USB OTG.

The Universal Serial Bus (USB) hardware (plug-and-play) standard makes connecting peripherals to your computer easy.

USB 1.1, introduced in 1995, is the original USB standard. It has two data rates:... more/see it now12 Mbps for devices such as disk drives that need high-speed throughput and 1.5 Mbps for devices such as joysticks that need much lower bandwidth.

In 2002, a newer specification, USB 2.0, or Hi-Speed USB 2.0, gained wide acceptance in the industry. This version is both forward- and backward-compatible with USB 1.1. It increases the speed of the peripheral to PC connection from 12 Mbps to 480 Mbps, or 40 times faster than USB 1.1!

This increase in bandwidth enhances the use of external peripherals that require high throughput, such as CD/DVD burners, scanners, digital cameras, video equipment, and more. USB 2.0 supports demanding applications, such as Web publishing, in which multiple high-speed devices run simultaneously. USB 2.0 also supports Windows® XP through a Windows update.

An even newer USB standard, USB On-The-Go (OTG), is also in development. USB OTG enables devices other than a PC to act as a host. It enables portable equipment—such as PDAs, cell phones, digital cameras, and digital music players—to connect to each other without the need for a PC host.

USB 2.0 specifies three types of connectors: the A connector, the B connector, and the Mini B connector. A fourth type of connector, the Mini A (used for smaller peripherals such as mobile phones), was developed as part of the USB OTG specification. collapse


Black Box Explains...DS-3 and DS-4

Digital signal (DS) speeds are used to classify the capacities of lines and trunks as designated by the Trunk (T) carrier systems. The most well-known T carrier system is the... more/see it nowNorth American T1 standard, which was originally designed to transmit digitized voice signals at 1.544 Mbps (DS-1). T carrier systems now carry digital data as well as voice transmissions.

DS-3 lines offer the functional equivalent of 28 T1 channels, operating at 44.736 Mbps (commonly rounded up to 45 Mbps). These lines handle up to 672 voice conversations and are used in high-speed interconnect and DS cross-connect (DSX) applications.

DS-4 offers 274.176 Mbps transmission—the same as 4032 standard voice channels—and has 168 times the capacity of T1. This performance level is generally used for carrier backbone networks.

Products offering DS-3 and DS-4 functionality comply with T3 and T4 standards, respectively, and with Bellcore GR-139-CORE specifications. collapse


Black Box Explains... Single-Mode Fiber Optic Cable

Multimode fiber cable has multiple modes of propagation—that is, several wavelengths of light are normally used in the fiber core. In contrast, single-mode fiber cable has only one mode of... more/see it nowpropagation: a single wavelength of light in the fiber core. This means there’s no interference or overlap between the different wavelengths of light to garble your data over long distances like there is with multimode cable.

What does this get you? Distance–up to 50 times more distance than multimode fiber cable. You can also get higher bandwidth. You can use a pair of single-mode fiber strands full-duplex for up to twice the throughput of multimode fiber cable. The actual speed and distance you get will vary with the devices used with the single-mode fiber. collapse


Black Box Explains...Power problems.

Sags
The Threat — A sag is a decline in the voltage level. Also known as “brownouts,” sags are the most common power problem.

The Cause — Sags can be caused... more/see it nowlocally by the start-up demands of electrical devices such as motors, compressors, and elevators. Sags may also happen during periods of high electrical use, such as during a heat wave.

The Effect — Sags are often the cause of “unexplained” computer glitches such as system crashes, frozen keyboards, and data loss. Sags can also reduce the efficiency and lifespan of electrical motors.

Blackouts
The Threat — A blackout is a total loss of power.

The Cause — Blackouts are caused by excessive demand on the power grid, an act of nature such as lightning or an earthquake, or a human accident such as a car hitting a power pole or a backhoe digging in the wrong place.

The Effect — Of course a blackout brings everything to a complete stop. You also lose any unsaved data stored in RAM and may even lose the total contents of your hard drive.

Spikes
The Threat — A spike, also called an impulse, is an instantaneous, dramatic increase in voltage.

The Cause — A spike is usually caused by a nearby lightning strike but may also occur when power is restored after a blackout.

The Effect — A spike can damage or completely destroy electrical components and also cause data loss.

Surges
The Threat — A surge is an increase in voltage lasting at least 1/120 of a second.

The Cause — When high-powered equipment such as an air conditioner is powered off, the excess voltage is dissipated though the power line causing a surge.

The Effect — Surges stress delicate electronic components causing them to wear out before their time.

Noise
The Threat — Electrical noise, more technically called electromagnetic interference (EMI) and radio frequency interference (RFI), interrupts the smooth sine wave expected from electrical power.

The Cause — Noise has many causes including nearby lightning, load switching, industrial equipment, and radio transmitters. It may be intermittent or chronic.

The Effect — Noise introduces errors into programs and data files. collapse


Black Box Explains... PCI buses

A Peripheral Component Interconnect (PCI) Bus enhances both speed and throughput. A PCI Local Bus is a high-performance bus that provides a processor-independent data path between the CPU and high-speed... more/see it nowperipherals. PCI is a robust interconnect interface designed specifically to accommodate multiple high-performance peripherals for graphics, full-motion video, SCSI, and LANs. collapse


Black Box Explains...Multimode vs. single-mode Fiber.

Multimode, 50- and 62.5-micron cable.
Multimode cable has a large-diameter core and multiple pathways of light. It comes in two core sizes: 50-micron and 62.5-micron.

Multimode fiber optic cable can be... more/see it nowused for most general data and voice fiber applications, such as bringing fiber to the desktop, adding segments to an existing network, and in smaller applications such as alarm systems. Both 50- and 62.5-micron cable feature the same cladding diameter of 125 microns, but 50-micron fiber cable features a smaller core (the light-carrying portion of the fiber).

Although both can be used in the same way, 50-micron cable is recommended for premise applications (backbone, horizontal, and intrabuilding connections) and should be considered for any new construction and installations. Both also use either LED or laser light sources. The big difference between the two is that 50-micron cable provides longer link lengths and/or higher speeds, particularly in the 850-nm wavelength.

Single-mode, 8–10-micron cable.
Single-mode cable has a small, 8–10-micron glass core and only one pathway of light. With only a single wavelength of light passing through its core, single-mode cable realigns the light toward the center of the core instead of simply bouncing it off the edge of the core as multimode does.

Single-mode cable provides 50 times more distance than multimode cable. Consequently, single-mode cable is typically used in long-haul network connections spread out over extended areas, including cable television and campus backbone applications. Telcos use it for connections between switching offices. Single-mode cable also provides higher bandwidth, so you can use a pair of single-mode fiber strands full-duplex for up to twice the throughput of multimode fiber.

Specification comparison:

50-/125-Micron Multimode Fiber

850-nm Wavelength:
Bandwidth: 500 MHz/km;
Attenuation: 3.5 dB/km;
Distance: 550 m;

1300-nm Wavelength:
Bandwidth: 500 MHz/km;
Attenuation: 1.5 dB/km;
Distance: 550 m

62.5-/125-Miron Multimode Fiber

850-nm Wavelength:
Bandwidth: 160 MHz/km;
Attenuation: 3.5 dB/km;
Distance: 220 m;

1300-nm Wavelength:
Bandwidth: 500 MHz/km;
Attenuation: 1.5 dB/km;
Distance: 500 m

8–10-Micron Single-Mode Fiber

Premise Application:
Wavelength: 1310 nm and 1550 nm;
Attenuation: 1.0 dB/km;

Outside Plant Application:
Wavelength: 1310 nm and 1550 nm;
Attenuation: 0.1 dB/km collapse


Black Box Explains... Basic Printer Switches

Mechanical—A mechanical switch is operated by a knob or by push buttons and uses a set of copper or gold-plated copper contacts to make a connection. The internal resistance created... more/see it nowby this type of connection will affect your signal’s transmission distance and must be taken into account when calculating cable lengths.

Electronic—Although electronic switches are controlled by knobs and pushbuttons like mechanical switches, the switching is accomplished with electronic gates not mechanical contacts. Electronic switches don’t have the internal resistance of a mechanical switch—some even have the ability to drive signals for longer distances. And since they don’t generate electronic spikes like mechanical switches, they’re safe for sensitive components such as HP® laser printers. Some electronic switches can be operated remotely. collapse


Black Box Explains...Media converters.



Media converters interconnect different cable types such as twisted pair, fiber, and coax within an existing network. They are often used to connect newer Ethernet equipment to legacy cabling.... more/see it nowThey can also be used in pairs to insert a fiber segment into copper networks to increase cabling distances and enhance immunity to electromagnetic interference (EMI).


Traditional media converters are purely Layer 1 devices that only convert electrical signals and physical media. They don’t do anything to the data coming through the link so they’re totally transparent to data. These converters have two ports—one port for each media type. Layer 1 media converters only operate at one speed and cannot, for instance, support both 10-Mbps and 100-Mbps Ethernet.


Some media converters are more advanced Layer 2 Ethernet devices that, like traditional media converters, provide Layer 1 electrical and physical conversion. But, unlike traditional media converters, they also provide Layer 2 services—in other words, they’re really switches. This kind of media converter often has more than two ports, enabling you to, for instance, extend two or more copper links across a single fiber link. They also often feature autosensing ports on the copper side, making them useful for linking segments operating at different speeds.


Media converters are available in standalone models that convert between two different media types and in chassis-based models that connect many different media types in a single housing.




Rent an apartment

Standalone converters convert between two media. But, like a small apartment, they can be outgrown. Consider your current and future applications before selecting a media converter. Standalone converters are available in many configurations, including 10BASE-T to multimode or single-mode fiber, 10BASE-T to Thin coax (ThinNet), 10BASE-T to thick coax (standard Ethernet), CDDI to FDDI, and Thin coax to fiber. 100BASE-T and 100BASE-FX models that connect UTP to single- or multimode fiber are also available. With the development of Gigabit Ethernet (1000 Mbps), media converters have been created to make the transition to high-speed networks easier.




...or buy a house.

Chassis-based or modular media converters are normally rackmountable and have slots that house media converter modules. Like a well-planned house, the chassis gives you room to grow. These are used when many Ethernet segments of different media types need to be connected in a central location. Modules are available for the same conversions performed by the standalone converters, and 10BASE-T, 100BASE-TX, 100BASE-FX, and Gigabit modules may also be mixed.

collapse


Black Box Explains... Buffers

A buffer (also called a spooler or a cache) is a temporary storage device used to share printers and compensate for a difference in speed and data flow between two... more/see it nowdevices. Buffers use RAM (Random-Access Memory) to take in data and hold it until the receiving device handles it.

A buffer serving a computer can be installed either internally or externally. Internal computer buffers are common in the forms of keyboard inputs, data caches, and video memory. An external buffer is usually used for printing.

An external buffer downloads jobs to the printer, freeing the computer so you can get back to work sooner.

A print buffer’s ports can be serial, parallel, or serial and parallel. Because a buffer’s ports operate independently of each other, a buffer also can be made to perform serial-to-parallel or parallel-to-serial conversion or to change the word structure and/or serial data rate (baud rate) of the data.

While most buffers are FIFO (First In, First Out), some advanced units can function as random-access buffers. For most serial buffers, hardware flow control is required, but some also support software (X-ON/X-OFF) control. Most buffers support printing of multiple copies of a document, provided the buffer has enough memory to store the entire print job. collapse

Results 41-49 of 49 < 1 2 3 4 5 
Close

Support

Delivering superior technical support is our highest priority. Depending on the products or services we provide for you, please visit your appropriate support area.



 
Print
Black Box 1-877-877-2269 Black Box Network Services