Loading


Categories (x) > Datacom (x)
Content Type (x) > Black Box Explains (x)

Results 21-30 of 47 < 1 2 3 4 5 > 

USB 3.0

The newest USB standard, USB 3.0 or “SuperSpeed USB," provides vast improvements over USB 2.0. USB 3.0 promises speeds up to 5 Gbps, about ten times that of USB 2.0.... more/see it now

USB 3.0 uses a sync-n-go technology that minimizes user wait time. USB 3.0 adds a physical bus running in parallel with the existing 2.0 bus. It has the flat USB Type A plug, but inside there is an extra set of connectors, and the edge of the plug is blue instead of white. The Type B plug looks different with an extra set of connectors.

USB 3.0 cable contains nine wires, four more than USB 2.0, which has one pair for data and one pair for power. USB 3.0 adds two more data pairs, for a total of eight plus a ground. These extra pairs enable USB 3.0 to support bidirectional asynchronous, full-duplex data transfer instead of USB 2.0’s half-duplex polling method.

USB 3.0 is much more power efficient than USB 2.0. It provides 50% more power than USB 2.0 (150 mA vs 100 mA) to unconfigured devices and up to 80% more power (900 mA vs 500 mA) to configured devices. It is also better at conserving power, when compared to USB 2.0, which uses power when the cable or device isn’t being used. With USB 3.0, when devices are idle, it doesn't broadcast packets or perform polling.

USB 3.0 is completely backwards compatible with USB 2.0. Applications built to the USB 2.0 spec will work seamlessly with USB 3.0. collapse


Black Box Explains...Gigabit Ethernet.

As workstations and servers migrated from ordinary 10-Mbps Ethernet to 100-Mbps speeds, it became clear that even greater speeds were needed. Gigabit Ethernet was developed for an even faster Ethernet... more/see it nowstandard to handle the network traffic generated on the server and backbone level by Fast Ethernet. Gigabit Ethernet delivers an incredible 1000 Mbps (or 1 Gbps), 100 times faster than 10BASE-T. At that speed, Gigabit Ethernet can handle even the traffic generated by campus network backbones. Plus it provides a smooth upgrade path from 10-Mbps Ethernet and 100-Mbps Fast Ethernet at a reasonable cost.

Compatibility
Gigabit Ethernet is a true Ethernet standard. Because it uses the same frame formats and flow control as earlier Ethernet versions, networks readily recognize it, and it’s compatible with older Ethernet standards. Other high-speed technologies (ATM, for instance) present compatibility problems such as different frame formats or different hardware requirements.

The primary difference between Gigabit Ethernet and earlier implementations of Ethernet is that Gigabit Ethernet almost always runs in full-duplex mode, rather than the half-duplex mode commonly found in 10- and 100-Mbps Ethernet.

One significant feature of Gigabit Ethernet is the improvement to the Carrier Sense Multiple Access with Collision Detection (CSMA/CD) function. In half-duplex mode, all Ethernet speeds use the CSMA/CD access method to resolve contention for shared media. For Gigabit Ethernet, CSMA/CD has been enhanced to maintain the 200-meter (656.1-ft.) collision diameter.

Affordability and adaptability
You can incorporate Gigabit Ethernet into any standard Ethernet network at a reasonable cost without having to invest in additional training, cabling, management tools, or end stations. Because Gigabit Ethernet blends so well with your other Ethernet applications, you have the flexibility to give each Ethernet segment exactly as much speed as it needs—and if your needs change, Ethernet is easily adaptable to new network requirements.

Gigabit Ethernet is the ideal high-speed technology to use between 10-/100-Mbps Ethernet switches or for connection to high-speed servers with the assurance of total compatibility with your Ethernet network.

When Gigabit Ethernet first appeared, fiber was crucial to running Gigabit Ethernet effectively. Since then, the IEEE802.3ab standard for Gigabit over Category 5 cable has been approved, enabling short stretches of Gigabit speed over existing copper cable. Today, you have many choices when implementing Gigabit Ethernet:

1000BASE-X
1000BASE-X refers collectively to the IEEE802.3z standards: 1000BASE-SX, 1000BASE-LX, and 1000BASE-CX.

1000BASE-SX
The “S“ in 1000BASE-SX stands for “short.“ It uses short wavelength lasers, operating in the 770- to 860-nanometer range, to transmit data over multimode fiber. It’s less expensive than 1000BASE-LX, but has a much shorter range of 220 meters over typical 62.5-µm multimode cable.

1000BASE-LX
The “L“ stands for “long.“ It uses long wavelength lasers operating in the wavelength range of 1270 to 1355 nanometers to transmit data over single-mode fiber optic cable. 1000BASE-LX supports up to 550 meters over multimode fiber or up to 10 kilometers over single-mode fiber.

1000BASE-CX
The “C“ stands for “copper.“ It operates over special twinax cable at distances of up to 25 meters. This standard never really caught on.

Gigabit over CAT5—1000BASE-TX
The 802.3ab specification, or 1000BASE-TX, enables you to run IEEE-compliant Gigabit Ethernet over copper twisted-pair cable at distances of up to 100 meters of CAT5 or higher cable.

Gigabit Ethernet uses all four twisted pairs within the cable, unlike 10BASE-T and 100BASE-TX, which only use two of the four pairs. It works by transmitting 250 Mbps over each of the four pairs in 4-pair cable. collapse


Black Box Explains...RS-232.

RS-232, also known as RS-232C and TIA/EIA-232-E, is a group of electrical, functional, and mechanical specifications for serial interfaces between computers, terminals, and peripherals. The RS-232 standard was developed by... more/see it nowthe Electrical Industries Association (EIA), and defines requirements for connecting data communications equipment (DCE)—modems, converters, etc.—and data terminal equipment (DTE)—computers, controllers, etc.) devices. RS-232 transmits data at speeds up to 115 Kbps and over distances up to 50 feet (15.2 m).

The standard, which is functionally equivalent to ITU V.24/V.28, specifies the workings of the interface, circuitry, and connector pinning. Both sync and async binary data transmission fall under RS-232. Although RS-232 is sometimes still used to transmit data from PCs to peripheral devices, the most common uses today are for network console ports and for industrial devices.

Even though RS-232 is a “standard,” you can’t necessarily expect seamless communication between two RS-232 devices. Why? Because different devices have different circuitry or pinning, and different wires may be designated to perform different functions.

The typical RS-232 connector is DB25, but some PCs and other data communication devices have DB9 connectors and many newer devices have RJ-45 RS-232 ports. To connect 9-pin PC ports or RJ-45 to devices with 25-pin connectors, you will require a simple adapter cable. collapse


Black Box Explains... Single-Mode Fiber Optic Cable

Multimode fiber cable has multiple modes of propagation—that is, several wavelengths of light are normally used in the fiber core. In contrast, single-mode fiber cable has only one mode of... more/see it nowpropagation: a single wavelength of light in the fiber core. This means there’s no interference or overlap between the different wavelengths of light to garble your data over long distances like there is with multimode cable.

What does this get you? Distance–up to 50 times more distance than multimode fiber cable. You can also get higher bandwidth. You can use a pair of single-mode fiber strands full-duplex for up to twice the throughput of multimode fiber cable. The actual speed and distance you get will vary with the devices used with the single-mode fiber. collapse


Black Box Explains...Terminal Servers

A terminal server (sometimes called a serial server) is a hardware device that enables you to connect serial devices across a network.

Terminal servers acquired their name because they were originally... more/see it nowused for long-distance connection of dumb terminals to large mainframe systems such as VAX™. Today, the name terminal server refers to a device that connects any serial device to a network, usually Ethernet. In this day of network-ready devices, terminal servers are not as common as they used to be, but they’re still frequently used for applications such as remote connection of PLCs, sensors, or automatic teller machines.

The primary advantage of terminal servers is that they save you the cost of running separate RS-232 devices. By using a network, you can connect serial devices even over very long distances—as far as your network stretches. It’s even possible to connect serial devices across the Internet. A terminal server connects the remote serial device to the network, and then another terminal server somewhere else on the network connects to the other serial device.

Terminal servers act as virtual serial ports by providing the appropriate connectors for serial data and also by grouping serial data in both directions into Ethernet TCP/IP packets. This conversion enables you to connect serial devices across Ethernet without the need for software changes.

Because terminal servers send data across a network, security is a consideration. If your network is isolated, you can get by with an inexpensive terminal server that has few or no security functions. If, however, you’re using a terminal server to make network connections across a network that’s also an Internet subnet, you should look for a terminal server that offers extensive security features. collapse


Black Box Explains... Industrial modem benefits.

Not all modems shuttle data in air-conditioned, climate-controlled comfort. And modems that operate in cozy environments have absolutely no business being exposed to harsh industrial conditions or to the elements.

But... more/see it nowjust because you work in a rough-and-tumble place doesn’t mean you have to sacrifice the convenience of a good modem. Instead, you should opt for an industrial modem. There are many industrial modems built for various degrees of extremity.

Survivability depends on reliability.
Sure, standard modems give you access to data in remote sites or enable you to service equipment on the plant floor—and you can do all this from the convenience of your office. However, these benefits are only possible if your modem can continue to function in its environment. And since standard modems aren’t built for adverse conditions, they’re not going to be reliable.

No penalties for interference.
Electrical control equipment—such as motors, relays, compressors, and generators—emit electromagnetic interference (EMI) that can affect the performance and reliability of a standard telephone modem.

EMI is emitted through power lines, the RS-232 communications cable, or through the telephone line itself. The very means of data communication, cable, is often the worst enemy of the standard modems that use it.

An industrial modem, on the other hand, has filters and superior EMI immunity to protect itself and your data. If you build your electrical cabinets to UL® or CSA standards, remember that your modem must also conform to UL® standard 508.

They go to extremes.
Temperature is the biggest killer of electronic equipment in industrial environments. The heat generated by industrial equipment in sealed enclosures or where space is a premium can make the temperature as much as 50 °F higher than the surrounding environment.

So standard modems can’t take the heat. But what about being outdoors in the other extreme, cold weather? Well, standard modems can’t take the cold either.

If you install your equipment in remote outdoor locations, it must work on the coldest days— especially those cold days when you least want to get in the car and go to the site to repair a standard modem that froze up.

Whether they’re placed in manufacturing environments or the great outdoors, industrial modems get the data through when you need it. They go to extremes for you.

Heavy metal for all kinds of banging around.
Industrial modems are built with durable metal enclosures that protect circuitry in rough conditions and ward off signal-disrupting EMI. Plus, they feature steel-bolt flanges to anchor them. In short, industrial modems can take the physical, heavy-duty punishment thrown their way.

So where exactly can you use an industrial modem?
• Heavy industry and manufacturing
• Oil and gas fields
• Refineries
• Storage sites
• Utility substations
• Agricultural projects
• Military facilities
• Research installations
• Water/wastewater systems

…and another thing!
If dedicated copper lines can’t be run through industrial environments, or if the fiber optic option is cost-prohibitive, there are also wireless industrial modems that make line-of-sight connections. If there’s a way to get the data through, industrial modems will get the job done.

Industrial-strength assurance.
Industrial modems remain in service for a very long time. But if you ever need a replacement that is hardware or software compatible, be assured that Black Box continues to support its products year after year—so you don’t spend your time re-engineering systems if you have to make a replacement. collapse


Black Box Explains...How computer speeds are enhanced with PCI buses and UARTs.

The Peripheral Component Interconnect (PCI®) Bus enhances both speed and throughput. The PCI Local Bus is a high-performance bus that provides a processor-independent data path between the CPU and high-speed... more/see it nowperipherals. PCI is a robust interconnect interface designed specifically to accommodate multiple high-performance peripherals for graphics, full-motion video, SCSI, and LANs.

UARTs (Universal Asynchronous Receiver/ Transmitters) are integrated circuits that convert bytes from the computer bus into serial bits for transmission. By providing surplus memory in a buffer, UARTs help your applications overcome the factors that slow down your system. collapse


Black Box Explains...T1 and E1.

If you manage a heavy-traffic data network and demand high bandwidth for high speeds, you need digital super-fast T1 or E1.

Both T1 and E1 are foundations of global communications. Developed... more/see it nowmore than 35 years ago and commercially available since 1983, T1 and E1 go virtually anywhere phone lines go, but they’re much faster. T1, used primarily in the U.S., sends data up to 1.544 Mbps; E1, used primarily in Europe, supports speeds to 2.048 Mbps. No matter where you need to connect—North, South, or Central America, Europe, or the Pacific Rim—T1 and E1 can get your data there fast!

T1 and E1 are versatile, too. Drive a private, point-to-point line; provide corporate access to the Internet; enable inbound access to your Web Server—even support a voice/data/fax/video WAN that extends halfway around the world! T1 and E1 are typically used for:
• Accessing public Frame Relay networks or Public Switched Telephone Networks (PSTNs) for voice or fax.
• Merging voice and data traffic. A single T1 or E1 line can support voice and data simultaneously.
• Making super-fast LAN connections. Today’s faster Ethernet speeds require the very high throughput provided by one or more T1 or E1 lines.
• Sending bandwidth-intensive data such as CAD/CAM, MRI, CAT-scan images, and other large files.

Scaling T1
Basic T1 service supplies a bandwidth of 1.536 Mbps. However, many of today’s applications demand much more bandwidth. Or perhaps you only need a portion of the 1.536 Mbps that T1 supplies. One of T1’s best features is that it can be scaled up or down to provide just the right amount of bandwidth for any application.

A T1 channel consists of 24 64-kbps DS0 (Digital Signal [Zero]) subchannels that combine to provide 1.536 Mbps throughput. Because they enable you to combine T1 lines or to use only part of a T1, DS0s make T1 a very flexible standard.

If you don’t need 1.536 Mbps, your T1 service provider can rent you a portion of a T1 line, called Fractional T1. For instance, you can contract for half a T1 line—768 kbps—and get the use of DS0s 1–12. The service provider is then free to sell DS0s 13–24 to another customer.

If you require more than 1.536 Mbps, two or more T1 lines can be combined to provide very-high-speed throughput. The next step up from T1 is T1C; it offers two T1 lines multiplexed together for a total throughput of 3.152 on 48 DS0s. Or consider T2 and get 6.312 Mbps over 96 DS0s by multiplexing four T1 lines together to form one high-speed connection.

Moving up the scale of high-speed T1 services is T3. T3 is 28 T1 lines multiplexed together for a blazing throughput of 44.736 Mbps, consisting of 672 DS0s, each of which supports 64 kbps.

Finally there’s T4. It consists of 4032 64-kbps DS0 subchannels for a whopping 274.176 Mbps of bandwidth—that’s 168 times the size of a single T1 line!

These various levels of T1 service can by implemented simulta-neously within a large enterprise network. Of course, this has the potential to become somewhat overwhelming from a management standpoint. But as long as you keep track of DS0s, you always know exactly how much bandwidth you have at your disposal.

T1’s cousin, E1, can also have multiple lines merged to provide greater throughput. collapse


Black Box Explains...Advanced printer switches.

Matrix—A matrix switch is a switch with a keypad for selecting one of many input ports to connect to any one of many output ports.

Port-Contention—A port-contention switch is an... more/see it nowautomatic electronic switch that can be serial or parallel. It has multiple input ports but only one output port. The switch monitors all ports simultaneously. When a port receives data, it prints and all the other ports have to wait.

Scanning—A scanning switch is like a port-contention switch, but it scans ports one at a time to find one that’s sending data.

Code-Operated—Code-operated switches receive a code (data string) from a PC or terminal to select a port.

Matrix Code-Operated—This matrix version of the code-operated switch can be an any-port to any-port switch. This means than any port on the switch can attach to any other port or any two or more ports can make a simultaneous link and transfer data. collapse


Black Box Explains…Fiber Ethernet adapters vs. media converters.

When running fiber to the desktop, you have two choices for making the connection from the fiber to a PC: a fiber Ethernet adapter or a media converter like our... more/see it nowMicro Mini Media Converter.

Fiber Ethernet adapters:

  • Less expensive.
  • Create no desktop clutter, but the PC must be opened.
  • Powered from the PC—require no separate power provision.
  • Require an open PCI or PCI-E slot in the PC.
  • Can create driver issues that must be resolved.
  • May be required in high-security installations that require a 100% fiber link to the desktop.

  • Media converters:
  • More expensive.
  • No need to open the PC but can create a cluttered look.
  • Powered from an AC outlet or a PC’s USB port.
  • Don’t require an open slot in the PC.
  • Plug-and-play installation—totally transparent to data, so there are no driver problems; install in seconds.
  • The short copper link from media converter to PC may be a security vulnerability.
  • collapse

    Results 21-30 of 47 < 1 2 3 4 5 > 
    Close

    Support

    Delivering superior technical support is our highest priority. Depending on the products or services we provide for you, please visit your appropriate support area.



     

    You have added this item to your cart.

    Important message about your cart:

    You requested more of "" than the currently available. The quantity has been changed to them maximum quantity available. View your cart.

    Print
    Black Box 1-800-316-7107 Black Box Network Services