Categories (x) > Datacom (x)
Content Type (x) > Black Box Explains (x)

Results 11-20 of 45 < 1 2 3 4 5 > 

Black Box Explains...T1 and E1.

If you manage a heavy-traffic data network and demand high bandwidth for high speeds, you need digital super-fast T1 or E1.

Both T1 and E1 are foundations of global communications. Developed... more/see it nowmore than 35 years ago and commercially available since 1983, T1 and E1 go virtually anywhere phone lines go, but they’re much faster. T1, used primarily in the U.S., sends data up to 1.544 Mbps; E1, used primarily in Europe, supports speeds to 2.048 Mbps. No matter where you need to connect—North, South, or Central America, Europe, or the Pacific Rim—T1 and E1 can get your data there fast!

T1 and E1 are versatile, too. Drive a private, point-to-point line; provide corporate access to the Internet; enable inbound access to your Web Server—even support a voice/data/fax/video WAN that extends halfway around the world! T1 and E1 are typically used for:
• Accessing public Frame Relay networks or Public Switched Telephone Networks (PSTNs) for voice or fax.
• Merging voice and data traffic. A single T1 or E1 line can support voice and data simultaneously.
• Making super-fast LAN connections. Today’s faster Ethernet speeds require the very high throughput provided by one or more T1 or E1 lines.
• Sending bandwidth-intensive data such as CAD/CAM, MRI, CAT-scan images, and other large files.

Scaling T1
Basic T1 service supplies a bandwidth of 1.536 Mbps. However, many of today’s applications demand much more bandwidth. Or perhaps you only need a portion of the 1.536 Mbps that T1 supplies. One of T1’s best features is that it can be scaled up or down to provide just the right amount of bandwidth for any application.

A T1 channel consists of 24 64-kbps DS0 (Digital Signal [Zero]) subchannels that combine to provide 1.536 Mbps throughput. Because they enable you to combine T1 lines or to use only part of a T1, DS0s make T1 a very flexible standard.

If you don’t need 1.536 Mbps, your T1 service provider can rent you a portion of a T1 line, called Fractional T1. For instance, you can contract for half a T1 line—768 kbps—and get the use of DS0s 1–12. The service provider is then free to sell DS0s 13–24 to another customer.

If you require more than 1.536 Mbps, two or more T1 lines can be combined to provide very-high-speed throughput. The next step up from T1 is T1C; it offers two T1 lines multiplexed together for a total throughput of 3.152 on 48 DS0s. Or consider T2 and get 6.312 Mbps over 96 DS0s by multiplexing four T1 lines together to form one high-speed connection.

Moving up the scale of high-speed T1 services is T3. T3 is 28 T1 lines multiplexed together for a blazing throughput of 44.736 Mbps, consisting of 672 DS0s, each of which supports 64 kbps.

Finally there’s T4. It consists of 4032 64-kbps DS0 subchannels for a whopping 274.176 Mbps of bandwidth—that’s 168 times the size of a single T1 line!

These various levels of T1 service can by implemented simulta-neously within a large enterprise network. Of course, this has the potential to become somewhat overwhelming from a management standpoint. But as long as you keep track of DS0s, you always know exactly how much bandwidth you have at your disposal.

T1’s cousin, E1, can also have multiple lines merged to provide greater throughput. collapse

Black Box Explains...Advantages of fiber optic line drivers.

Fiber optic line drivers are much better for communications than copper-wire alternatives because they offer three main advantages: superior conductivity, freedom from interference, and security.

Superior conductivity for increased performance
The glass... more/see it nowcore of a fiber optic cable is an excellent signal conductor. With proper splices and terminations, fiber cable yields very low signal loss and can easily support data rates of 100 Mbps or more.

Immunity to electrical interference
Because fiber optic line drivers use a nonmetallic conductor, they don’t pick up or emit electromagnetic or radio-frequency interference (EMI/RFI). Crosstalk (interference from an adjacent communication channel) is also eliminated, which increases transmission quality.

Signals transmitted via fiber optic line drivers aren’t susceptible to any form of external frequency-related interference. That makes fiber connections completely immune to damaging power surges, signal distortions from nearby lightning strikes, and high-voltage interference. Because fiber cable doesn’t conduct electricity, it can’t create electrical problems in your equipment.

Signal security
Electronic eavesdropping requires the ability to intercept and monitor the electromagnetic frequencies of signals traveling over a copper data wire. Fiber optic line drivers use a light-based transmission medium, so they’re completely immune to electronic bugging. collapse

Black Box Explains...How computer speeds are enhanced with PCI buses and UARTs.

The Peripheral Component Interconnect (PCI®) Bus enhances both speed and throughput. The PCI Local Bus is a high-performance bus that provides a processor-independent data path between the CPU and high-speed... more/see it nowperipherals. PCI is a robust interconnect interface designed specifically to accommodate multiple high-performance peripherals for graphics, full-motion video, SCSI, and LANs.

UARTs (Universal Asynchronous Receiver/ Transmitters) are integrated circuits that convert bytes from the computer bus into serial bits for transmission. By providing surplus memory in a buffer, UARTs help your applications overcome the factors that slow down your system. collapse

Black Box Explains...Advanced printer switches.

Matrix—A matrix switch is a switch with a keypad for selecting one of many input ports to connect to any one of many output ports.

Port-Contention—A port-contention switch is an... more/see it nowautomatic electronic switch that can be serial or parallel. It has multiple input ports but only one output port. The switch monitors all ports simultaneously. When a port receives data, it prints and all the other ports have to wait.

Scanning—A scanning switch is like a port-contention switch, but it scans ports one at a time to find one that’s sending data.

Code-Operated—Code-operated switches receive a code (data string) from a PC or terminal to select a port.

Matrix Code-Operated—This matrix version of the code-operated switch can be an any-port to any-port switch. This means than any port on the switch can attach to any other port or any two or more ports can make a simultaneous link and transfer data. collapse

Black Box Explains...Gigabit Ethernet.

As workstations and servers migrated from ordinary 10-Mbps Ethernet to 100-Mbps speeds, it became clear that even greater speeds were needed. Gigabit Ethernet was developed for an even faster Ethernet... more/see it nowstandard to handle the network traffic generated on the server and backbone level by Fast Ethernet. Gigabit Ethernet delivers an incredible 1000 Mbps (or 1 Gbps), 100 times faster than 10BASE-T. At that speed, Gigabit Ethernet can handle even the traffic generated by campus network backbones. Plus it provides a smooth upgrade path from 10-Mbps Ethernet and 100-Mbps Fast Ethernet at a reasonable cost.

Gigabit Ethernet is a true Ethernet standard. Because it uses the same frame formats and flow control as earlier Ethernet versions, networks readily recognize it, and it’s compatible with older Ethernet standards. Other high-speed technologies (ATM, for instance) present compatibility problems such as different frame formats or different hardware requirements.

The primary difference between Gigabit Ethernet and earlier implementations of Ethernet is that Gigabit Ethernet almost always runs in full-duplex mode, rather than the half-duplex mode commonly found in 10- and 100-Mbps Ethernet.

One significant feature of Gigabit Ethernet is the improvement to the Carrier Sense Multiple Access with Collision Detection (CSMA/CD) function. In half-duplex mode, all Ethernet speeds use the CSMA/CD access method to resolve contention for shared media. For Gigabit Ethernet, CSMA/CD has been enhanced to maintain the 200-meter (656.1-ft.) collision diameter.

Affordability and adaptability
You can incorporate Gigabit Ethernet into any standard Ethernet network at a reasonable cost without having to invest in additional training, cabling, management tools, or end stations. Because Gigabit Ethernet blends so well with your other Ethernet applications, you have the flexibility to give each Ethernet segment exactly as much speed as it needs—and if your needs change, Ethernet is easily adaptable to new network requirements.

Gigabit Ethernet is the ideal high-speed technology to use between 10-/100-Mbps Ethernet switches or for connection to high-speed servers with the assurance of total compatibility with your Ethernet network.

When Gigabit Ethernet first appeared, fiber was crucial to running Gigabit Ethernet effectively. Since then, the IEEE802.3ab standard for Gigabit over Category 5 cable has been approved, enabling short stretches of Gigabit speed over existing copper cable. Today, you have many choices when implementing Gigabit Ethernet:

1000BASE-X refers collectively to the IEEE802.3z standards: 1000BASE-SX, 1000BASE-LX, and 1000BASE-CX.

The “S“ in 1000BASE-SX stands for “short.“ It uses short wavelength lasers, operating in the 770- to 860-nanometer range, to transmit data over multimode fiber. It’s less expensive than 1000BASE-LX, but has a much shorter range of 220 meters over typical 62.5-µm multimode cable.

The “L“ stands for “long.“ It uses long wavelength lasers operating in the wavelength range of 1270 to 1355 nanometers to transmit data over single-mode fiber optic cable. 1000BASE-LX supports up to 550 meters over multimode fiber or up to 10 kilometers over single-mode fiber.

The “C“ stands for “copper.“ It operates over special twinax cable at distances of up to 25 meters. This standard never really caught on.

Gigabit over CAT5—1000BASE-TX
The 802.3ab specification, or 1000BASE-TX, enables you to run IEEE-compliant Gigabit Ethernet over copper twisted-pair cable at distances of up to 100 meters of CAT5 or higher cable.

Gigabit Ethernet uses all four twisted pairs within the cable, unlike 10BASE-T and 100BASE-TX, which only use two of the four pairs. It works by transmitting 250 Mbps over each of the four pairs in 4-pair cable. collapse

Black Box Explains... Spread Spectrum wireless technology.

Frequency-Hopping Spread Spectrum wireless communication provides error-free transmission, top security, and high levels of throughput without the need for an FCC site license. The key to Spread Spectrum is a... more/see it nowfrequency-hopping transceiver.

Narrow-band frequency hoppers use a predefined algorithm to maintain synchronization and high throughput between master and remote modems. They achieve this by continually switching or “hopping” from one transmission frequency to another throughout the Spread Spectrum band. The sequence of frequencies is very difficult to predict and thus nearly impossible to eavesdrop on or jam. If interference is encountered at any particular frequency, the built-in error correction detects it and resends the data packet at the next frequency hop. Because EMI/RFI interference rarely affects the entire available bandwidth, and each frequency hop is at least 6 MHz, the radio transmitter has access to as many as 100 frequencies within the spectrum to avoid interference and ensure that data gets through. collapse

Black Box Explains...Connecting peripherals with USB.

Before Universal Serial Bus (USB), adding peripherals required skill. You had to open your computer to install a card, set DIP switches, and make IRQ settings. Now you can connect... more/see it nowdigital joysticks, scanners, speakers, cameras, or PC telephones to your computer instantly. With USB, anyone can make the connection because everything is automatic!

Because USB connections are hot-swappable, you can attach or remove peripherals without shutting down your computer. Also, USB hubs have additional ports that enable you to daisychain multiple devices together. More than 800 leading PC, peripheral, and software manufacturers support USB. collapse

Black Box Explains...16850 UART.

The 16850 Universal Asynchronous Receiver/Transmitter (UART) features a 128-byte First In First Out (FIFO) buffer. When implemented with the appropriate onboard drivers and receivers, it enables your onboard serial ports... more/see it nowto achieve sustained data rates of up to 460.8 kbps.

The 16850 UART includes automatic handshaking (RTS/CTS) and automatic RS-485 line control. It also features external clocking for isochronous applications, a performance enhancement not offered by earlier UARTs. collapse

Black Box Explains...How MicroRACK Cards fit together.

Slide a function card into the front of the rack. Then slide a connector card in from the back. The rest is simple. Just press the cards together firmly inside... more/see it nowthe rack to seat the connectors.

Changing systems? It’s easy to change to a different connector card. Just contact us, and we’ll find the right connection for you.

Add a hot-swappable power supply (AC for normal operation, VDC for battery-powered sites), and you’re up and running. collapse

Black Box Explains...How fiber is insulated for use in harsh environments.

Fiber optic cable not only gives you immunity to interference and greater signal security, but it’s also constructed to insulate the fiber’s core from the stress associated with use in... more/see it nowharsh environments.

The core is a very delicate channel that’s used to transport data signals from an optical transmitter to an optical receiver. To help reinforce the core, absorb shock, and provide extra protection against cable bends, fiber cable contains a coating of acrylate plastic.

In an environment free from the stress of external forces such as temperature, bends, and splices, fiber optic cable can transmit light pulses with minimal attenuation. And although there will always be some attenuation from external forces and other conditions, there are two methods of cable construction to help isolate the core: loose-tube and tight-buffer construction.

In a loose-tube construction, the fiber core literally floats within a plastic gel-filled sleeve. Surrounded by this protective layer, the core is insulated from temperature extremes, as well as from damaging external forces such as cutting and crushing.

In a tight-core construction, the plastic extrusion method is used to apply a protective coating directly over the fiber coating. This helps the cable withstand even greater crushing forces. But while the tight-buffer design offers greater protection from core breakage, it’s more susceptible to stress from temperature variations. Conversely, while it’s more flexible than loose-tube cable, the tight-buffer design offers less protection from sharp bends or twists. collapse

Results 11-20 of 45 < 1 2 3 4 5 > 


Delivering superior technical support is our highest priority. Depending on the products or services we provide for you, please visit your appropriate support area.


You have added this item to your cart.

Important message about your cart:

You requested more of "" than the currently available. The quantity has been changed to them maximum quantity available. View your cart.

Black Box 1-800-316-7107 Black Box Network Services