Categories (x) > Datacom > Multiplexors > Fiber (x)
Content Type (x) > Black Box Explains (x)

Results 1-2 of 2 1 

Black Box Explains...Benefits of T1 and E1.

If you manage a heavy-traffic data network and you demand high bandwidth for high speeds, Black Box has what you need to send your data digitally over super-fast T1 or... more/see it nowE1 communication lines.

Both T1 and E1 are foundations of global voice communication.
Developed more than 30 years ago and commercially available since 1983, T1 and E1 go virtually anywhere phone lines go, but faster.

T1 sends data up to 1.544 Mbps. E1 supports speeds to 2.048 Mbps. No matter where you need to connect—North, South, or Central America, Europe, or the Pacific Rim—T1 and E1 can get your data there—fast!

Both services provide flexibility for a multitude of applications.
Whether you need to drive a private, point-to-point line or a high-speed circuit; provide corporate access to the Internet or inbound access to your own webserver; or support a voice/data/fax/video WAN that extends halfway around the world, T1 or E1 can make the connection.

Both offer cost-effective connections.
In recent years, competition among telco service providers has led to increasingly more affordable prices for T1 and E1 services. In fact, most companies seriously considering a shift to T1 or E1 find they can negotiate even better rates with just a little comparative cost analysis.

Typical applications:
• Trunking of V.90 and ISDN remote connection to a central location.
• Accessing public Frame Relay networks for voice, fax, and data.
• Merging voice and data traffic. A single T1 or E1 line can give you several additional voice and data lines at no additional cost.
• Making LAN connections. If you’re linking LANs, a T1 or E1 line offers excellent performance.
• Sending bandwidth-intensive data such as CAD/CAM, MRI, CAT-scan images, and other graphics with large files. collapse

Black Box Explains... Local Multiplexors

Local multiplexors extend the distance between computers and terminals or printers that are connected via customer-installed or telco-supplied cable.

Like line drivers, local multiplexors extend RS-232 communications and must be... more/see it nowused in pairs. The difference between the two is that multiplexors merge several transmissions into one transmission over a single channel; line drivers generally transmit data over a single channel.

Local multiplexors operate over ordinary twisted-pair copper cable or fiber optic cable. Copper cable is typically used within buildings while fiber optic cable is the most common choice for connecting buildings in a campus environment. For in-building connections, copper cable is widely used because it’s comparatively inexpensive and easy to install. Your building might even have unshielded twisted-pair cable already in place.

The twisted-pair copper cable used for local multiplexors is run throughout buildings from the wallplates of each office or work area to a central wiring closet within the building. Wiring closets have centrally located punchdown blocks where all cables from the building are terminated. That way, when a connection needs to be changed or a new one needs to be made within the building, wiring can be easily rerouted on the punchdown blocks.

Selecting a local multiplexor.
When selecting a local multiplexor, keep in mind that copper-based multiplexors come in a vast array of types. You’ll find multiplexors available with RJ-11, RJ-45, or terminal block connections for your in-house wiring and with RS-232 connections for your computer equipment. All these multiplexors can be used to link a local device to a remote device within a building. collapse

Results 1-2 of 2 1 


Delivering superior technical support is our highest priority. Depending on the products or services we provide for you, please visit your appropriate support area.

Black Box 1-877-877-2269 Black Box Network Services