Loading


Categories (x) > Datacom > Extenders and Line Drivers (x)
Content Type (x) > Black Box Explains (x)

Results 11-15 of 15 < 1 2 

Black Box Explains...T1 and E1 benefits.

If you manage a heavy-traffic data network and you demand high bandwidth for high speeds, Black Box has what you need to send your data digitally over super-fast T1 or... more/see it nowE1 communication lines.

Both T1 and E1 are foundations of global voice communication.
Developed more than 30 years ago and commercially available since 1983, T1 and E1 go virtually anywhere phone lines go, but faster. T1 sends data up to 1.544 Mbps. E1 supports speeds to 2.048 Mbps. No matter where you need to connect—North, South, or Central America, Europe, or the Pacific Rim—T1 and E1 can get your data there—fast!

Both services provide flexibility for a multitude of applications. Whether you need to drive a private, point-to-point line or a high- speed circuit, provide corporate access to the Internet or inbound access to your own webserver, or support a voice/data/fax/video WAN that extends halfway around the world, T1 or E1 can make the connection.

Both offer cost-effective connections.
In recent years, competition among telco service providers has led to increasingly more affordable prices for T1 and E1 services. In fact, most companies seriously considering a shift to T1 or E1 will find they can negotiate even better rates with just a little comparative cost analysis.

Some typical applications include:
• Accessing public Frame-Relay networks or public switched telephone networks for voice and fax.
• Merging voice and data traffic. A single T1 or E1 line can give you several additional voice and data lines at no additional cost.
• Making LAN connections. If you’re linking LANs, a T1 or E1 line offers excellent performance.
• Sending bandwidth-intensive data such as CAD/CAM, MRI, CAT-scan images, and other graphics with large files. collapse


Black Box Explains...How MicroRACK Cards fit together.

Slide a function card into the front of the rack. Then slide a connector card in from the back. The rest is simple. Just press the cards together firmly inside... more/see it nowthe rack to seat the connectors.

Changing systems? It’s easy to change to a different connector card. Just contact us, and we’ll find the right connection for you.

Add a hot-swappable power supply (AC for normal operation, VDC for battery-powered sites), and you’re up and running. collapse


Black Box Explains... Industrial modem benefits.

Not all modems shuttle data in air-conditioned, climate-controlled comfort. And modems that operate in cozy environments have absolutely no business being exposed to harsh industrial conditions or to the elements.

But... more/see it nowjust because you work in a rough-and-tumble place doesn’t mean you have to sacrifice the convenience of a good modem. Instead, you should opt for an industrial modem. There are many industrial modems built for various degrees of extremity.

Survivability depends on reliability.
Sure, standard modems give you access to data in remote sites or enable you to service equipment on the plant floor—and you can do all this from the convenience of your office. However, these benefits are only possible if your modem can continue to function in its environment. And since standard modems aren’t built for adverse conditions, they’re not going to be reliable.

No penalties for interference.
Electrical control equipment—such as motors, relays, compressors, and generators—emit electromagnetic interference (EMI) that can affect the performance and reliability of a standard telephone modem.

EMI is emitted through power lines, the RS-232 communications cable, or through the telephone line itself. The very means of data communication, cable, is often the worst enemy of the standard modems that use it.

An industrial modem, on the other hand, has filters and superior EMI immunity to protect itself and your data. If you build your electrical cabinets to UL® or CSA standards, remember that your modem must also conform to UL® standard 508.

They go to extremes.
Temperature is the biggest killer of electronic equipment in industrial environments. The heat generated by industrial equipment in sealed enclosures or where space is a premium can make the temperature as much as 50 °F higher than the surrounding environment.

So standard modems can’t take the heat. But what about being outdoors in the other extreme, cold weather? Well, standard modems can’t take the cold either.

If you install your equipment in remote outdoor locations, it must work on the coldest days— especially those cold days when you least want to get in the car and go to the site to repair a standard modem that froze up.

Whether they’re placed in manufacturing environments or the great outdoors, industrial modems get the data through when you need it. They go to extremes for you.

Heavy metal for all kinds of banging around.
Industrial modems are built with durable metal enclosures that protect circuitry in rough conditions and ward off signal-disrupting EMI. Plus, they feature steel-bolt flanges to anchor them. In short, industrial modems can take the physical, heavy-duty punishment thrown their way.

So where exactly can you use an industrial modem?
• Heavy industry and manufacturing
• Oil and gas fields
• Refineries
• Storage sites
• Utility substations
• Agricultural projects
• Military facilities
• Research installations
• Water/wastewater systems

…and another thing!
If dedicated copper lines can’t be run through industrial environments, or if the fiber optic option is cost-prohibitive, there are also wireless industrial modems that make line-of-sight connections. If there’s a way to get the data through, industrial modems will get the job done.

Industrial-strength assurance.
Industrial modems remain in service for a very long time. But if you ever need a replacement that is hardware or software compatible, be assured that Black Box continues to support its products year after year—so you don’t spend your time re-engineering systems if you have to make a replacement. collapse


Black Box Explains...USB.

The Universal Serial Bus (USB) hardware (plug-and-play) standard makes connecting peripherals to your computer easy. USB 1.1, introduced in 1995, is the original USB standard. It has two data rates:... more/see it now12 Mbps and 1.5 Mbps. USB 2.0, or Hi-Speed USB 2.0, was released in 2000. It increased the peripheral-to-PC speed from 12 Mbps to 480 Mbps, or 40 times faster than USB 1.1. This increase in bandwidth enabled the use of peripherals requiring higher throughput, such as CD/DVD burners, scanners, digital cameras, and video equipment. It is backward-compatible with USB 1.1.

The newest USB standard, USB 3.0 (or SuperSpeed USB), (2008) provides vast improvements over USB 2.0. It promises speeds up to 4.8 Gbps, nearly ten times that of USB 2.0. USB 3.0 has the flat USB Type A plug, but inside there is an extra set of connectors and the edge of the plug is blue instead of white. The Type B plug looks different with an extra set of connectors.

USB 3.0 adds a physical bus running in parallel with the existing 2.0 bus. USB 3.0 cable contains nine wires, four wire pairs plus a ground. It has two more data pairs than USB 2.0, which has one pair for data and one pair for power. The extra pairs enable USB 3.0 to support bidirectional async, full-duplex data transfer instead of USB 2.0’s half-duplex polling method.

USB 3.0 provides 50% more power than USB 2.0 (150 mA vs 100 mA) to unconfigured devices and up to 80% more power (900 mA vs 500 mA) to configured devices. Also, USB 3.0 conserves more power when compared to USB 2.0, which uses power when the cable isn’t being used. collapse


Black Box Explains...How a line driver operates.

Driving data? Better check the transmission.

Line drivers can operate in any of four transmission modes: 4-wire full-duplex, 2-wire full-duplex, 4-wire half-duplex, and 2-wire half-duplex. In fact, most models support more... more/see it nowthan one type of operation.

So how do you know which line driver to use in your application?

The deal with duplexing.
First you must decide if you need half- or full-duplex transmission. In half-duplex transmission, voice or data signals are transmitted in only one direction at a time, In full-duplex operation, voice or data signals are transmitted in both directions at the same time. In both scenarios, the communications path support the full data rate.

The entire bandwidth is available for your transmission in half-duplex mode. In full-duplex mode, however, the bandwidth must be split in two because data travels in both directions simultaneously.

Two wires or not two wires? That is the question.
The second consideration you have is the type of twisted-pair cable you need to complete your data transmissions. Generally you need twisted-pair cable with either two or four wires. Often the type of cabling that’s already installed in a building dictates what kind of a line driver you use. For example, if two twisted pairs of UTP cabling are available, you can use a line driver that operates in 4-wire applications, such as the Short-Haul Modem-B Async or the Line Driver-Dual Handshake models. Otherwise, you might choose a line driver that works for 2-wire applications, such as the Short-Haul Modem-B 2W or the Async 2-Wire Short-Haul Modem.

If you have the capabilities to support both 2- and 4-wire operation in half- or full-duplex mode, we even offer line drivers that support all four types of operation.

As always, if you’re still unsure which operational mode will work for your particular applications, consult our Technical Support experts and they’ll help you make your decision. collapse

Results 11-15 of 15 < 1 2 
Close

Support

Delivering superior technical support is our highest priority. Depending on the products or services we provide for you, please visit your appropriate support area.



 
Print
Black Box 1-877-877-2269 Black Box Network Services