Loading


Categories (x) > Datacom > Extenders and Line Drivers (x)
Content Type (x) > Black Box Explains (x)

Results 1-10 of 15 1 2 > 

Black Box Explains...Multimode vs. single-mode Fiber.

Multimode, 50- and 62.5-micron cable.
Multimode cable has a large-diameter core and multiple pathways of light. It comes in two core sizes: 50-micron and 62.5-micron.

Multimode fiber optic cable can be... more/see it nowused for most general data and voice fiber applications, such as bringing fiber to the desktop, adding segments to an existing network, and in smaller applications such as alarm systems. Both 50- and 62.5-micron cable feature the same cladding diameter of 125 microns, but 50-micron fiber cable features a smaller core (the light-carrying portion of the fiber).

Although both can be used in the same way, 50-micron cable is recommended for premise applications (backbone, horizontal, and intrabuilding connections) and should be considered for any new construction and installations. Both also use either LED or laser light sources. The big difference between the two is that 50-micron cable provides longer link lengths and/or higher speeds, particularly in the 850-nm wavelength.

Single-mode, 8–10-micron cable.
Single-mode cable has a small, 8–10-micron glass core and only one pathway of light. With only a single wavelength of light passing through its core, single-mode cable realigns the light toward the center of the core instead of simply bouncing it off the edge of the core as multimode does.

Single-mode cable provides 50 times more distance than multimode cable. Consequently, single-mode cable is typically used in long-haul network connections spread out over extended areas, including cable television and campus backbone applications. Telcos use it for connections between switching offices. Single-mode cable also provides higher bandwidth, so you can use a pair of single-mode fiber strands full-duplex for up to twice the throughput of multimode fiber.

Specification comparison:

50-/125-Micron Multimode Fiber

850-nm Wavelength:
Bandwidth: 500 MHz/km;
Attenuation: 3.5 dB/km;
Distance: 550 m;

1300-nm Wavelength:
Bandwidth: 500 MHz/km;
Attenuation: 1.5 dB/km;
Distance: 550 m

62.5-/125-Miron Multimode Fiber

850-nm Wavelength:
Bandwidth: 160 MHz/km;
Attenuation: 3.5 dB/km;
Distance: 220 m;

1300-nm Wavelength:
Bandwidth: 500 MHz/km;
Attenuation: 1.5 dB/km;
Distance: 500 m

8–10-Micron Single-Mode Fiber

Premise Application:
Wavelength: 1310 nm and 1550 nm;
Attenuation: 1.0 dB/km;

Outside Plant Application:
Wavelength: 1310 nm and 1550 nm;
Attenuation: 0.1 dB/km collapse


Black Box Explains...T1 and E1.

If you manage a heavy-traffic data network and demand high bandwidth for high speeds, you need digital super-fast T1 or E1.

Both T1 and E1 are foundations of global communications. Developed... more/see it nowmore than 35 years ago and commercially available since 1983, T1 and E1 go virtually anywhere phone lines go, but they’re much faster. T1, used primarily in the U.S., sends data up to 1.544 Mbps; E1, used primarily in Europe, supports speeds to 2.048 Mbps. No matter where you need to connect—North, South, or Central America, Europe, or the Pacific Rim—T1 and E1 can get your data there fast!

T1 and E1 are versatile, too. Drive a private, point-to-point line; provide corporate access to the Internet; enable inbound access to your Web Server—even support a voice/data/fax/video WAN that extends halfway around the world! T1 and E1 are typically used for:
• Accessing public Frame Relay networks or Public Switched Telephone Networks (PSTNs) for voice or fax.
• Merging voice and data traffic. A single T1 or E1 line can support voice and data simultaneously.
• Making super-fast LAN connections. Today’s faster Ethernet speeds require the very high throughput provided by one or more T1 or E1 lines.
• Sending bandwidth-intensive data such as CAD/CAM, MRI, CAT-scan images, and other large files.

Scaling T1
Basic T1 service supplies a bandwidth of 1.536 Mbps. However, many of today’s applications demand much more bandwidth. Or perhaps you only need a portion of the 1.536 Mbps that T1 supplies. One of T1’s best features is that it can be scaled up or down to provide just the right amount of bandwidth for any application.

A T1 channel consists of 24 64-kbps DS0 (Digital Signal [Zero]) subchannels that combine to provide 1.536 Mbps throughput. Because they enable you to combine T1 lines or to use only part of a T1, DS0s make T1 a very flexible standard.

If you don’t need 1.536 Mbps, your T1 service provider can rent you a portion of a T1 line, called Fractional T1. For instance, you can contract for half a T1 line—768 kbps—and get the use of DS0s 1–12. The service provider is then free to sell DS0s 13–24 to another customer.

If you require more than 1.536 Mbps, two or more T1 lines can be combined to provide very-high-speed throughput. The next step up from T1 is T1C; it offers two T1 lines multiplexed together for a total throughput of 3.152 on 48 DS0s. Or consider T2 and get 6.312 Mbps over 96 DS0s by multiplexing four T1 lines together to form one high-speed connection.

Moving up the scale of high-speed T1 services is T3. T3 is 28 T1 lines multiplexed together for a blazing throughput of 44.736 Mbps, consisting of 672 DS0s, each of which supports 64 kbps.

Finally there’s T4. It consists of 4032 64-kbps DS0 subchannels for a whopping 274.176 Mbps of bandwidth—that’s 168 times the size of a single T1 line!

These various levels of T1 service can by implemented simulta-neously within a large enterprise network. Of course, this has the potential to become somewhat overwhelming from a management standpoint. But as long as you keep track of DS0s, you always know exactly how much bandwidth you have at your disposal.

T1’s cousin, E1, can also have multiple lines merged to provide greater throughput. collapse


Black Box Explains... Spread Spectrum wireless technology.

Frequency-Hopping Spread Spectrum wireless communication provides error-free transmission, top security, and high levels of throughput without the need for an FCC site license. The key to Spread Spectrum is a... more/see it nowfrequency-hopping transceiver.

Narrow-band frequency hoppers use a predefined algorithm to maintain synchronization and high throughput between master and remote modems. They achieve this by continually switching or “hopping” from one transmission frequency to another throughout the Spread Spectrum band. The sequence of frequencies is very difficult to predict and thus nearly impossible to eavesdrop on or jam. If interference is encountered at any particular frequency, the built-in error correction detects it and resends the data packet at the next frequency hop. Because EMI/RFI interference rarely affects the entire available bandwidth, and each frequency hop is at least 6 MHz, the radio transmitter has access to as many as 100 frequencies within the spectrum to avoid interference and ensure that data gets through. collapse


Black Box Explains...Selecting fiber line drivers.

When choosing a fiber driver, you should make a power budget, calculate the speed and distance of your cable run, and know the interface requirements of all your devices.

Many of... more/see it nowour fiber drivers are for single-mode fiber optic cable. Compared to multimode fiber, single-mode delivers up to 50 times more distance. And single-mode at full-duplex enables up to two times the data throughput of multimode fiber. collapse


Black Box Explains...USB.

The Universal Serial Bus (USB) hardware (plug-and-play) standard makes connecting peripherals to your computer easy. USB 1.1, introduced in 1995, is the original USB standard. It has two data rates:... more/see it now12 Mbps and 1.5 Mbps. USB 2.0, or Hi-Speed USB 2.0, was released in 2000. It increased the peripheral-to-PC speed from 12 Mbps to 480 Mbps, or 40 times faster than USB 1.1. This increase in bandwidth enabled the use of peripherals requiring higher throughput, such as CD/DVD burners, scanners, digital cameras, and video equipment. It is backward-compatible with USB 1.1.

The newest USB standard, USB 3.0 (or SuperSpeed USB), (2008) provides vast improvements over USB 2.0. It promises speeds up to 4.8 Gbps, nearly ten times that of USB 2.0. USB 3.0 has the flat USB Type A plug, but inside there is an extra set of connectors and the edge of the plug is blue instead of white. The Type B plug looks different with an extra set of connectors.

USB 3.0 adds a physical bus running in parallel with the existing 2.0 bus. USB 3.0 cable contains nine wires, four wire pairs plus a ground. It has two more data pairs than USB 2.0, which has one pair for data and one pair for power. The extra pairs enable USB 3.0 to support bidirectional async, full-duplex data transfer instead of USB 2.0’s half-duplex polling method.

USB 3.0 provides 50% more power than USB 2.0 (150 mA vs 100 mA) to unconfigured devices and up to 80% more power (900 mA vs 500 mA) to configured devices. Also, USB 3.0 conserves more power when compared to USB 2.0, which uses power when the cable isn’t being used. collapse


Black Box Explains...V.35, the Faster Serial Interface.

V.35 is the ITU (formerly CCITT) standard termed “Data Transmission at 48 kbps Using 60–108 KHz Group-Band Circuits.“

Basically, V.35 is a high-speed serial interface designed to support both higher data... more/see it nowrates and connectivity between DTEs (data-terminal equipment) or DCEs (data-communication equipment) over digital lines.

Recognizable by its blocky, 34-pin connector, V.35 combines the bandwidth of several telephone circuits to provide the high-speed interface between a DTE or DCE and a CSU/DSU (Channel Service Unit/Data Service Unit).

Although it’s commonly used to support speeds ranging anywhere from 48 to 64 kbps, much higher rates are possible. For instance, maximum V.35 cable distances can theoretically range up to 4000 feet (1200 m) at speeds up to 100 kbps. Actual distances will depend on your equipment and cable.

To achieve such high speeds and great distances, V.35 combines both balanced and unbalanced voltage signals on the same interface. collapse


Black Box Explains...Media converters.



Media converters interconnect different cable types such as twisted pair, fiber, and coax within an existing network. They are often used to connect newer Ethernet equipment to legacy cabling.... more/see it nowThey can also be used in pairs to insert a fiber segment into copper networks to increase cabling distances and enhance immunity to electromagnetic interference (EMI).


Traditional media converters are purely Layer 1 devices that only convert electrical signals and physical media. They don’t do anything to the data coming through the link so they’re totally transparent to data. These converters have two ports—one port for each media type. Layer 1 media converters only operate at one speed and cannot, for instance, support both 10-Mbps and 100-Mbps Ethernet.


Some media converters are more advanced Layer 2 Ethernet devices that, like traditional media converters, provide Layer 1 electrical and physical conversion. But, unlike traditional media converters, they also provide Layer 2 services—in other words, they’re really switches. This kind of media converter often has more than two ports, enabling you to, for instance, extend two or more copper links across a single fiber link. They also often feature autosensing ports on the copper side, making them useful for linking segments operating at different speeds.


Media converters are available in standalone models that convert between two different media types and in chassis-based models that connect many different media types in a single housing.




Rent an apartment

Standalone converters convert between two media. But, like a small apartment, they can be outgrown. Consider your current and future applications before selecting a media converter. Standalone converters are available in many configurations, including 10BASE-T to multimode or single-mode fiber, 10BASE-T to Thin coax (ThinNet), 10BASE-T to thick coax (standard Ethernet), CDDI to FDDI, and Thin coax to fiber. 100BASE-T and 100BASE-FX models that connect UTP to single- or multimode fiber are also available. With the development of Gigabit Ethernet (1000 Mbps), media converters have been created to make the transition to high-speed networks easier.




...or buy a house.

Chassis-based or modular media converters are normally rackmountable and have slots that house media converter modules. Like a well-planned house, the chassis gives you room to grow. These are used when many Ethernet segments of different media types need to be connected in a central location. Modules are available for the same conversions performed by the standalone converters, and 10BASE-T, 100BASE-TX, 100BASE-FX, and Gigabit modules may also be mixed.

collapse


Black Box Explains...How fiber is insulated for use in harsh environments.

Fiber optic cable not only gives you immunity to interference and greater signal security, but it’s also constructed to insulate the fiber’s core from the stress associated with use in... more/see it nowharsh environments.

The core is a very delicate channel that’s used to transport data signals from an optical transmitter to an optical receiver. To help reinforce the core, absorb shock, and provide extra protection against cable bends, fiber cable contains a coating of acrylate plastic.

In an environment free from the stress of external forces such as temperature, bends, and splices, fiber optic cable can transmit light pulses with minimal attenuation. And although there will always be some attenuation from external forces and other conditions, there are two methods of cable construction to help isolate the core: loose-tube and tight-buffer construction.

In a loose-tube construction, the fiber core literally floats within a plastic gel-filled sleeve. Surrounded by this protective layer, the core is insulated from temperature extremes, as well as from damaging external forces such as cutting and crushing.

In a tight-core construction, the plastic extrusion method is used to apply a protective coating directly over the fiber coating. This helps the cable withstand even greater crushing forces. But while the tight-buffer design offers greater protection from core breakage, it’s more susceptible to stress from temperature variations. Conversely, while it’s more flexible than loose-tube cable, the tight-buffer design offers less protection from sharp bends or twists. collapse


Black Box Explains... Advantages of the MicroRACK system.

• Midplane architecture—Separate front and rear cards make changing interfaces easy.
• Multiple functions—Supports line drivers, interface converters, fiber modems, CSU/DSUs, and synchronous modem eliminators.
• Hot swappable—MicroRACK Cards can be replaced... more/see it nowwithout powering down, so you cut your network’s downtime.
• Two-, four-, and eight-port MicroRACKs—available for smaller or desktop installations. They’re just right for tight spaces that can’t accommodate a full-sized (16-port) rack.
• Optional dual cards—Some Mini Driver Cards have two drivers in one card. One MicroRACK chassis can hold up to 32 Mini Drivers!
• All standard connections available—DB25, RJ-11, RJ-45, fiber, V.35.
• Choose you own power supply—120–240 VAC, 12 VDC, 24 VDC, or 48 VDC. collapse


Black Box Explains...How a line driver operates.

Driving data? Better check the transmission.

Line drivers can operate in any of four transmission modes: 4-wire full-duplex, 2-wire full-duplex, 4-wire half-duplex, and 2-wire half-duplex. In fact, most models support more... more/see it nowthan one type of operation.

So how do you know which line driver to use in your application?

The deal with duplexing.
First you must decide if you need half- or full-duplex transmission. In half-duplex transmission, voice or data signals are transmitted in only one direction at a time, In full-duplex operation, voice or data signals are transmitted in both directions at the same time. In both scenarios, the communications path support the full data rate.

The entire bandwidth is available for your transmission in half-duplex mode. In full-duplex mode, however, the bandwidth must be split in two because data travels in both directions simultaneously.

Two wires or not two wires? That is the question.
The second consideration you have is the type of twisted-pair cable you need to complete your data transmissions. Generally you need twisted-pair cable with either two or four wires. Often the type of cabling that’s already installed in a building dictates what kind of a line driver you use. For example, if two twisted pairs of UTP cabling are available, you can use a line driver that operates in 4-wire applications, such as the Short-Haul Modem-B Async or the Line Driver-Dual Handshake models. Otherwise, you might choose a line driver that works for 2-wire applications, such as the Short-Haul Modem-B 2W or the Async 2-Wire Short-Haul Modem.

If you have the capabilities to support both 2- and 4-wire operation in half- or full-duplex mode, we even offer line drivers that support all four types of operation.

As always, if you’re still unsure which operational mode will work for your particular applications, consult our Technical Support experts and they’ll help you make your decision. collapse

Results 1-10 of 15 1 2 > 
Close

Support

Delivering superior technical support is our highest priority. Depending on the products or services we provide for you, please visit your appropriate support area.



 
Print
Black Box 1-877-877-2269 Black Box Network Services