Loading


Categories (x) > Datacom > Extenders and Line Drivers > Fiber Optic (x)

Results 11-18 of 18 < 1 2 

Black Box Explains...Multimode vs. single-mode Fiber.

Multimode, 50- and 62.5-micron cable.
Multimode cable has a large-diameter core and multiple pathways of light. It comes in two core sizes: 50-micron and 62.5-micron.

Multimode fiber optic cable can be... more/see it nowused for most general data and voice fiber applications, such as bringing fiber to the desktop, adding segments to an existing network, and in smaller applications such as alarm systems. Both 50- and 62.5-micron cable feature the same cladding diameter of 125 microns, but 50-micron fiber cable features a smaller core (the light-carrying portion of the fiber).

Although both can be used in the same way, 50-micron cable is recommended for premise applications (backbone, horizontal, and intrabuilding connections) and should be considered for any new construction and installations. Both also use either LED or laser light sources. The big difference between the two is that 50-micron cable provides longer link lengths and/or higher speeds, particularly in the 850-nm wavelength.

Single-mode, 8–10-micron cable.
Single-mode cable has a small, 8–10-micron glass core and only one pathway of light. With only a single wavelength of light passing through its core, single-mode cable realigns the light toward the center of the core instead of simply bouncing it off the edge of the core as multimode does.

Single-mode cable provides 50 times more distance than multimode cable. Consequently, single-mode cable is typically used in long-haul network connections spread out over extended areas, including cable television and campus backbone applications. Telcos use it for connections between switching offices. Single-mode cable also provides higher bandwidth, so you can use a pair of single-mode fiber strands full-duplex for up to twice the throughput of multimode fiber.

Specification comparison:

50-/125-Micron Multimode Fiber

850-nm Wavelength:
Bandwidth: 500 MHz/km;
Attenuation: 3.5 dB/km;
Distance: 550 m;

1300-nm Wavelength:
Bandwidth: 500 MHz/km;
Attenuation: 1.5 dB/km;
Distance: 550 m

62.5-/125-Miron Multimode Fiber

850-nm Wavelength:
Bandwidth: 160 MHz/km;
Attenuation: 3.5 dB/km;
Distance: 220 m;

1300-nm Wavelength:
Bandwidth: 500 MHz/km;
Attenuation: 1.5 dB/km;
Distance: 500 m

8–10-Micron Single-Mode Fiber

Premise Application:
Wavelength: 1310 nm and 1550 nm;
Attenuation: 1.0 dB/km;

Outside Plant Application:
Wavelength: 1310 nm and 1550 nm;
Attenuation: 0.1 dB/km collapse


Black Box Explains...T1 and E1 benefits.

If you manage a heavy-traffic data network and you demand high bandwidth for high speeds, Black Box has what you need to send your data digitally over super-fast T1 or... more/see it nowE1 communication lines.

Both T1 and E1 are foundations of global voice communication.
Developed more than 30 years ago and commercially available since 1983, T1 and E1 go virtually anywhere phone lines go, but faster. T1 sends data up to 1.544 Mbps. E1 supports speeds to 2.048 Mbps. No matter where you need to connect—North, South, or Central America, Europe, or the Pacific Rim—T1 and E1 can get your data there—fast!

Both services provide flexibility for a multitude of applications. Whether you need to drive a private, point-to-point line or a high- speed circuit, provide corporate access to the Internet or inbound access to your own webserver, or support a voice/data/fax/video WAN that extends halfway around the world, T1 or E1 can make the connection.

Both offer cost-effective connections.
In recent years, competition among telco service providers has led to increasingly more affordable prices for T1 and E1 services. In fact, most companies seriously considering a shift to T1 or E1 will find they can negotiate even better rates with just a little comparative cost analysis.

Some typical applications include:
• Accessing public Frame-Relay networks or public switched telephone networks for voice and fax.
• Merging voice and data traffic. A single T1 or E1 line can give you several additional voice and data lines at no additional cost.
• Making LAN connections. If you’re linking LANs, a T1 or E1 line offers excellent performance.
• Sending bandwidth-intensive data such as CAD/CAM, MRI, CAT-scan images, and other graphics with large files. collapse


Product Data Sheets (pdf)...Fiber Optic Multipoint (FOM) Line Drivers


Product Data Sheets (pdf)...Async Fiber Optic Modem

  • Manual... 
  • FlexPoint T1/E1 to Fiber Line Driver
    Installation and User Guide (Dec-04)
 
  • Visio Stencil Drawing... 
  • Visio Stencil
    Stencil Drawings
 
  • Manual... 
  • FlexPoint T1/E1 to Fiber Line Driver
    Installation and User Guide (Mar-06)
 

Product Data Sheets (pdf)...Fiber Optic Line Drivers

Results 11-18 of 18 < 1 2 
Close

Support

Delivering superior technical support is our highest priority. Depending on the products or services we provide for you, please visit your appropriate support area.



 
Print
Black Box 1-877-877-2269 Black Box Network Services