Loading


Categories (x) > Datacom > Converters > Serial (x)
Content Type (x) > Black Box Explains (x)

Results 1-10 of 12 1 2 > 

Black Box Explains...UARTs at a glance.

Universal Asynchronous Receiver/Transmitters (UARTs) are integrated circuits that convert bytes from the computer bus into serial bits for transmission. By providing surplus memory in a buffer, UARTs help applications overcome... more/see it nowthe factors that can hinder system performance, providing maximum throughput to high-performance peripherals without slowing down CPUs.

Early UARTs such as 8250 and 16450 did not include buffering (RAM or memory). With the advent of higher-speed devices, the need for UARTs that could handle more data became critical. The first buffered UART was the 16550, which incorporates a 16-byte First In First Out (FIFO) buffer and provides greater throughput than its predecessors.

Manufacturers have been developing enhanced UARTs that continue to increase performance standards. These faster chips provide improvements such as larger buffers and increased speeds. Here are the rates of today’s common UARTs:

UART FIFO Buffer Rate Supported
16550 16-byte 115.2 kbps
16554 16-byte 115.2 kbps
16650 32-byte 460.8 kbps (burst rate)
16654 64-byte 460.8 kbps (burst rate)
16750 64-byte 460.8 kbps (burst rate)
16850 128-byte 460.8 kbps (sustained rate)
16854 128-byte 460.8 kbps (sustained rate) collapse


Black Box Explains...UARTs and PCI buses.

Universal Asynchronous Receiver/Transmitters UARTs are designed to convert sync data from a PC bus to an async format that external I/O devices such as printers or modems use. UARTs insert... more/see it nowor remove start bits, stop bits, and parity bits in the data stream as needed by the attached PC or peripheral. They can provide maximum throughput to your high-performance peripherals without slowing down your CPU.

In the early years of PCs and single-application operating systems, UARTs interfaced directly between the CPU bus and external RS-232 I/O devices. Early UARTs did not contain any type of buffer because PCs only performed one task at a time and both PCs and peripherals were slow.

With the advent of faster PCs, higher-speed modems, and multitasking operating systems, buffering (RAM or memory) was added so that UARTs could handle more data. The first buffered UART was the 16550 UART, which incorporates a 16-byte FIFO (First In First Out) buffer and can support sustained data-transfer rates up to 115.2 kbps.

The 16650 UART features a 32-byte FIFO and can handle sustained baud rates of 460.8 kbps. Burst data rates of up to 921.6 kbps have even been achieved in laboratory tests.

The 16750 UART has a 64-byte FIFO. It also features sustained baud rates of 460.8 kbps but delivers better performance because of its larger buffer.

Used in newer PCI cards, the 16850 UART has a 128-byte FIFO buffer for each port. It features sustained baud rates of 460.8 kbps.

The Peripheral Component Interconnect (PCI®) Bus enhances both speed and throughput. PCI Local Bus is a high-performance bus that provides a processor-independent data path between the CPU and high-speed peripherals. PCI is a robust interconnect interface designed specifically to accommodate multiple high-performance peripherals for graphics, full-motion video, SCSI, and LANs.

A Universal PCI (uPCI) card has connectors that work with both a newer 3.3-V power supply and motherboard and with older 5.5-V versions. collapse


Black Box Explains...USB.

What is USB?
Universal Serial Bus (USB) is a royalty-free bus specification developed in the 1990s by leading manufacturers in the PC and telephony industries to support plug-and-play peripheral connections. USB... more/see it nowhas standardized how peripherals, such as keyboards, disk drivers, cameras, printers, and hubs) are connected to computers.

USB offers increased bandwidth, isochronous and asynchronous data transfer, and lower cost than older input/output ports. Designed to consolidate the cable clutter associated with multiple peripherals and ports, USB supports all types of computer- and telephone-related devices.

Universal Serial Bus (USB) USB detects and configures the new devices instantly.
Before USB, adding peripherals required skill. You had to open your computer to install a card, set DIP switches, and make IRQ settings. Now you can connect digital printers, recorders, backup drives, and other devices in seconds. USB detects and configures the new devices instantly.

Benefits of USB.
• USB is “universal.” Almost every device today has a USB port of some type.
• Convenient plug-and-play connections. No powering down. No rebooting.
• Power. USB supplies power so you don’t have to worry about adding power. The A socket supplies the power.
• Speed. USB is fast and getting faster. The original USB 1.0 had a data rate of 1.5 Mbps. USB 3.0 has a data rate of 4.8 Gbps.

USB Standards

USB 1.1
USB 1.1, introduced in 1995, is the original USB standard. It has two data rates: 12 Mbps (Full-Speed) for devices such as disk drives that need high-speed throughput and 1.5 Mbps (Low-Speed) for devices such as joysticks that need much lower bandwidth.

USB 2.0
In 2002, USB 2.0, (High-Speed) was introduced. This version is backward-compatible with USB 1.1. It increases the speed of the peripheral to PC connection from 12 Mbps to 480 Mbps, or 40 times faster than USB 1.1.

This increase in bandwidth enhances the use of external peripherals that require high throughput, such as printers, cameras, video equipment, and more. USB 2.0 supports demanding applications, such as Web publishing, in which multiple high-speed devices run simultaneously.

USB 3.0
USB 3.0 (SuperSpeed) (2008) provides vast improvements over USB 2.0. USB 3.0 has speeds up to 5 Gbps, nearly ten times that of USB 2.0. USB 3.0 adds a physical bus running in parallel with the existing 2.0 bus.

USB 3.0 is designed to be backward compatible with USB 2.0.

USB 3.0 Connector
USB 3.0 has a flat USB Type A plug, but inside there is an extra set of connectors and the edge of the plug is blue instead of white. The Type B plug looks different with an extra set of connectors. Type A plugs from USB 3.0 and 2.0 are designed to interoperate. USB 3.0 Type B plugs are larger than USB 2.0 plugs. USB 2.0 Type B plugs can be inserted into USB 3.0 receptacles, but the opposite is not possible.

USB 3.0 Cable
The USB 3.0 cable contains nine wires—four wire pairs plus a ground. It has two more data pairs than USB 2.0, which has one pair for data and one pair for power. The extra pairs enable USB 3.0 to support bidirectional asynchronous, full-duplex data transfer instead of USB 2.0’s half-duplex polling method.

USB 3.0 Power
USB 3.0 provides 50% more power than USB 2.0 (150 mA vs 100 mA) to unconfigured devices and up to 80% more power (900 mA vs 500 mA) to configured devices. It also conserves power too compared to USB 2.0, which uses power when the cable isn’t being used.

USB 3.1
Released in 2013, is called SuperSpeed USB 10 Gbps. There are three main differentiators to USB 3.1. It doubles the data rate from 5 Gbps to 10 Gbps. It will use the new, under-development Type C connector, which is far smaller and designed for use with everything from laptops to mobile phones. The Type C connector is being touted as a single-cable solution for audio, video, data, and power. It will also have a reversible plug orientation. Lastly, will have bidirectional power delivery of up to 100 watts and power auto-negotiation. It is backward compatible with USB 3.0 and 2.0, but an adapter is needed for the physical connection.

Transmission Rates
USB 3.0: 4.8 Gbps
USB 2.0: 480 Mbps
USB 1.1: 12 Mbps

Cable Length/Node
5 meters (3 meters for 3.0 devices requiring higher speeds).
Devices/bus: 127
Tier/bus: 5
collapse


Black Box Explains...Optical isolation and ground loops.

Optical isolation protects your equipment from dangerous ground loops. A ground loop is a current across a conductor, created by a difference in potential between two grounded points, as in... more/see it nowequipment in two buildings connected by a run of RS-232 or other data line. When two devices are connected and their potentials are different, voltage flows from high to low by traveling through the data cable. If the voltage potential is large enough, your equipment won’t be able to handle the excess voltage and one of your ports will be damaged.

Ground loops can also exist in industrial environments. They can be created when power is supplied to your equipment from different transformers or when someone simply turns equipment on and off. Ground loops can also occur when there is a nearby lightning strike. During an electrical storm, the ground at one location can be charged differently than the other location, causing a heavy current flow through the serial communication lines that damage components.

You can’t test for ground loops. You don’t know you have one until a vital component fails. Only prevention works. For data communication involving copper cable, optical isolation is key.

With optical isolation, electrical data is converted to an optical beam, then back to an electrical pulse. Because there is no electrical connection between the DTE and DCE sides, an optical isolator— unlike a surge suppressor—will not pass large sustained power surges through to your equipment. Since data only passes through the optical isolator, your equipment is protected against ground loops and other power surges. collapse


Black Box Explains...How computer speeds are enhanced with PCI buses and UARTs.

The Peripheral Component Interconnect (PCI®) Bus enhances both speed and throughput. The PCI Local Bus is a high-performance bus that provides a processor-independent data path between the CPU and high-speed... more/see it nowperipherals. PCI is a robust interconnect interface designed specifically to accommodate multiple high-performance peripherals for graphics, full-motion video, SCSI, and LANs.

UARTs (Universal Asynchronous Receiver/ Transmitters) are integrated circuits that convert bytes from the computer bus into serial bits for transmission. By providing surplus memory in a buffer, UARTs help your applications overcome the factors that slow down your system. collapse


Black Box Explains...Terminal Servers

A terminal server (sometimes called a serial server) is a hardware device that enables you to connect serial devices across a network.

Terminal servers acquired their name because they were originally... more/see it nowused for long-distance connection of dumb terminals to large mainframe systems such as VAX™. Today, the name terminal server refers to a device that connects any serial device to a network, usually Ethernet. In this day of network-ready devices, terminal servers are not as common as they used to be, but they’re still frequently used for applications such as remote connection of PLCs, sensors, or automatic teller machines.

The primary advantage of terminal servers is that they save you the cost of running separate RS-232 devices. By using a network, you can connect serial devices even over very long distances—as far as your network stretches. It’s even possible to connect serial devices across the Internet. A terminal server connects the remote serial device to the network, and then another terminal server somewhere else on the network connects to the other serial device.

Terminal servers act as virtual serial ports by providing the appropriate connectors for serial data and also by grouping serial data in both directions into Ethernet TCP/IP packets. This conversion enables you to connect serial devices across Ethernet without the need for software changes.

Because terminal servers send data across a network, security is a consideration. If your network is isolated, you can get by with an inexpensive terminal server that has few or no security functions. If, however, you’re using a terminal server to make network connections across a network that’s also an Internet subnet, you should look for a terminal server that offers extensive security features. collapse


Black Box Explains...IRQs, COM Ports, and Windows

Windows® 95 normally requires each serial port to have its own unique Interrupt Request Line (IRQ). However, if you use a third-party communications driver that supports IRQ sharing, you can... more/see it nowshare interrupts. Unfortunately, data throughput will not be as high as with single interrupt port configurations.

With Windows NT®, you can share interrupts across multiple ports as long as the serial ports have an Interrupt Status Port (ISP) built into the card.

The Interrupt Service Routine, a software routine that services interrupts and requests processor time, reads the ISP and is immmediately directed to the port that has an interrupt pending. Compared to the polling method used if the serial ports don’t have an ISP, this feature can determine which port generated the interrupt up to four times more efficiently—and it almost eliminates the risk of lost data. Windows NT supports the ISP by enabling the user to configure the registry to match the card’s settings. Black Box models IC102C-R3, IC058C, and IC112C-R3 all have ISPs and come with a Windows NT setup utility to simplify installation and configuration.

If your serial port doesn’t have an ISP, the Interrupt Service Routine has to poll each port separately to determine which port generated the interrupt. collapse


Black Box Explains...DIN rail.

DIN rail is an industry-standard metal rail, usually installed inside an electrical enclosure, which serves as a mount for small electrical devices specially designed for use with DIN rails. These... more/see it nowdevices snap right onto the rails, sometimes requiring a set screw, and are then wired together.

Many different devices are available for mounting on DIN rails: terminal blocks, interface converters, media converter switches, repeaters, surge protectors, PLCs, fuses, or power supplies, just to name a few.

DIN rails are a space-saving way to accommodate components. And because DIN rail devices are so easy to install, replace, maintain, and inspect, this is an exceptionally convenient system that has become very popular in recent years.

A standard DIN rail is 35 mm wide with raised-lip edges, its dimensions outlined by the Deutsche Institut für Normung, a German standardization body. Rails are generally available in aluminum or steel and may be cut for installation. Depending on the requirements of the mounted components, the rail may need to be grounded. collapse


Black Box Explains...Low-profile PCI serial adapters.

Ever notice that newer computers are getting smaller and slimmer? That means regular PCI boards won’t fit into these computers’ low-profile PCI slots. But because miniaturization is the rage in... more/see it nowall matters of technology, it was only a short matter of time before low-profile PCI serial adapters became available—and Black Box has them.

Low-profile cards meet the PCI Special Interest Group (PCI-SIG) Low-Profile PCI specifications, the form-factor definitions for input/output expansion. Low-Profile PCI has two card lengths defined for 32-bit bus cards: MD1 and MD2. MD1 is the smaller of the two, with cards no larger than 4.721 inches long and 2.536 inches high. MD2 cards are a maximum of 6.6 inches long and 2.536 inches high.

BLACK BOX® Low-Profile Serial PCI cards comply with the MD1 low-profile specification and are compatible with the universal bus. Universal bus is a PCI card that can operate in either a 5-V or 3.3-V signaling level system. collapse


Black Box Explains...16850 UART.

The 16850 Universal Asynchronous Receiver/Transmitter (UART) features a 128-byte First In First Out (FIFO) buffer. When implemented with the appropriate onboard drivers and receivers, it enables your onboard serial ports... more/see it nowto achieve sustained data rates of up to 460.8 kbps.

The 16850 UART includes automatic handshaking (RTS/CTS) and automatic RS-485 line control. It also features external clocking for isochronous applications, a performance enhancement not offered by earlier UARTs. collapse

Results 1-10 of 12 1 2 > 
Close

Support

Delivering superior technical support is our highest priority. Depending on the products or services we provide for you, please visit your appropriate support area.



 

You have added this item to your cart.

Print
Black Box 1-877-877-2269 Black Box Network Services