Loading


Categories (x) > Cables (x)

Results 51-60 of 380 << < 6 7 8 9 10 > >> 
  • Pdf Drawing... 
  • CAT5e 100-MHz Shielded, Stranded Bulk PVC Cable (FTP), Violet, PDF drawing
    PDF Drawing for EVNSL0172VI-1000 (v1)
 
  • Pdf Drawing... 
  • Single-Mode, 9.0-Micron Duplex Fiber Optic Cable PDF Drawing
    PDF Drawing for EFN310-SCSC Series (1)
 

Product Data Sheets (pdf)...Multimode, 50-Micron Duplex Fiber Optic Patch Cable



Black Box Explains...PC, UPC, and APC fiber connectors.

Fiber optic cables have different types of mechanical connections. The type of connection determines the quality of the fiber optic lightwave transmission. The different types we’ll discuss here are the... more/see it nowflat-surface, Physical Contact (PC), Ultra Physical Contact (UPC), and Angled Physical Contact (APC).

The original fiber connector is a flat-surface connection, or a flat connector. When mated, an air gap naturally forms between the two surfaces from small imperfections in the flat surfaces. The back reflection in flat connectors is about -14 dB or roughly 4%.

As technology progresses, connections improve. The most common connection now is the PC connector. Physical Contact connectors are just that—the end faces and fibers of two cables actually touch each other when mated.

In the PC connector, the two fibers meet, as they do with the flat connector, but the end faces are polished to be slightly curved or spherical. This eliminates the air gap and forces the fibers into contact. The back reflection is about -40 dB. This connector is used in most applications.

An improvement to the PC is the UPC connector. The end faces are given an extended polishing for a better surface finish. The back reflection is reduced even more to about -55 dB. These connectors are often used in digital, CATV, and telephony systems.

The latest technology is the APC connector. The end faces are still curved but are angled at an industry-standard eight degrees. This maintains a tight connection, and it reduces back reflection to about -70 dB. These connectors are preferred for CATV and analog systems.

PC and UPC connectors have reliable, low insertion losses. But their back reflection depends on the surface finish of the fiber. The finer the fiber grain structure, the lower the back reflection. And when PC and UPC connectors are continually mated and remated, back reflection degrades at a rate of about 4 to 6 dB every 100 matings for a PC connector. APC connector back reflection does not degrade with repeated matings. collapse


Black Box Explains...USB.

What is USB?
Universal Serial Bus (USB) is a royalty-free bus specification developed in the 1990s by leading manufacturers in the PC and telephony industries to support plug-and-play peripheral connections. USB... more/see it nowhas standardized how peripherals, such as keyboards, disk drivers, cameras, printers, and hubs) are connected to computers.

USB offers increased bandwidth, isochronous and asynchronous data transfer, and lower cost than older input/output ports. Designed to consolidate the cable clutter associated with multiple peripherals and ports, USB supports all types of computer- and telephone-related devices.

Universal Serial Bus (USB) USB detects and configures the new devices instantly.
Before USB, adding peripherals required skill. You had to open your computer to install a card, set DIP switches, and make IRQ settings. Now you can connect digital printers, recorders, backup drives, and other devices in seconds. USB detects and configures the new devices instantly.

Benefits of USB.
• USB is “universal.” Almost every device today has a USB port of some type.
• Convenient plug-and-play connections. No powering down. No rebooting.
• Power. USB supplies power so you don’t have to worry about adding power. The A socket supplies the power.
• Speed. USB is fast and getting faster. The original USB 1.0 had a data rate of 1.5 Mbps. USB 3.0 has a data rate of 4.8 Gbps.

USB Standards

USB 1.1
USB 1.1, introduced in 1995, is the original USB standard. It has two data rates: 12 Mbps (Full-Speed) for devices such as disk drives that need high-speed throughput and 1.5 Mbps (Low-Speed) for devices such as joysticks that need much lower bandwidth.

USB 2.0
In 2002, USB 2.0, (High-Speed) was introduced. This version is backward-compatible with USB 1.1. It increases the speed of the peripheral to PC connection from 12 Mbps to 480 Mbps, or 40 times faster than USB 1.1.

This increase in bandwidth enhances the use of external peripherals that require high throughput, such as printers, cameras, video equipment, and more. USB 2.0 supports demanding applications, such as Web publishing, in which multiple high-speed devices run simultaneously.

USB 3.0
USB 3.0 (SuperSpeed) (2008) provides vast improvements over USB 2.0. USB 3.0 has speeds up to 5 Gbps, nearly ten times that of USB 2.0. USB 3.0 adds a physical bus running in parallel with the existing 2.0 bus.

USB 3.0 is designed to be backward compatible with USB 2.0.

USB 3.0 Connector
USB 3.0 has a flat USB Type A plug, but inside there is an extra set of connectors and the edge of the plug is blue instead of white. The Type B plug looks different with an extra set of connectors. Type A plugs from USB 3.0 and 2.0 are designed to interoperate. USB 3.0 Type B plugs are larger than USB 2.0 plugs. USB 2.0 Type B plugs can be inserted into USB 3.0 receptacles, but the opposite is not possible.

USB 3.0 Cable
The USB 3.0 cable contains nine wires—four wire pairs plus a ground. It has two more data pairs than USB 2.0, which has one pair for data and one pair for power. The extra pairs enable USB 3.0 to support bidirectional asynchronous, full-duplex data transfer instead of USB 2.0’s half-duplex polling method.

USB 3.0 Power
USB 3.0 provides 50% more power than USB 2.0 (150 mA vs 100 mA) to unconfigured devices and up to 80% more power (900 mA vs 500 mA) to configured devices. It also conserves power too compared to USB 2.0, which uses power when the cable isn’t being used.

USB 3.1
Released in 2013, is called SuperSpeed USB 10 Gbps. There are three main differentiators to USB 3.1. It doubles the data rate from 5 Gbps to 10 Gbps. It will use the new, under-development Type C connector, which is far smaller and designed for use with everything from laptops to mobile phones. The Type C connector is being touted as a single-cable solution for audio, video, data, and power. It will also have a reversible plug orientation. Lastly, will have bidirectional power delivery of up to 100 watts and power auto-negotiation. It is backward compatible with USB 3.0 and 2.0, but an adapter is needed for the physical connection.

Transmission Rates
USB 3.0: 4.8 Gbps
USB 2.0: 480 Mbps
USB 1.1: 12 Mbps

Cable Length/Node
5 meters (3 meters for 3.0 devices requiring higher speeds).
Devices/bus: 127
Tier/bus: 5
collapse


Product Data Sheets (pdf)...Cables for Cisco Routers


Product Data Sheets (pdf)...ISA Cards


Product Data Sheets (pdf)...Ultra2 LVD SCSI Cables and Terminators

  • Pdf Drawing... 
  • GigaTrue CAT6 Channel Patch Cable with Basic Connectors (Pink) PDF Drawing
    PDF Drawing of the EVNSL626 Series
 
Results 51-60 of 380 << < 6 7 8 9 10 > >> 
Close

Support

Delivering superior technical support is our highest priority. Depending on the products or services we provide for you, please visit your appropriate support area.



 

You have added this item to your cart.

Print
Black Box 1-877-877-2269 Black Box Network Services