Categories (x) > Cables (x)
Content Type (x) > Black Box Explains (x)

Results 41-50 of 68 < 1 2 3 4 5 > >> 

Black Box Explains...Digital Visual Interface (DVI) cables.

The Digital Visual Interface (DVI) standard is based on transition-minimized differential signaling (TMDS). In a typical single-line digital signal, voltage is raised to a high level and decreased to a... more/see it nowlow level to create transitions that convey data. To minimize the number of transitions needed to transfer data, TMDS uses a pair of signal wires. When one wire goes to a high-voltage state, the other goes to a low-voltage state. This balance increases the data-transfer rate and improves accuracy.

There are different types of DVI connectors: DVI-D, DVI-I, DVI-A, DFP, and EVC. DVI-D is a digital-only connector.

DVI-D is a digital-only connector. DVI-I supports both digital and analog RGB connections. Some manufacturers are offering the DVI-I connector type on their products instead of separate analog and digital connectors. DVI-A is used to carry an analog DVI signal to a VGA device, such as a display. DFP, like DVI-D, was an early digital-only connector used on some displays; it’s being phased out. EVC (also known as P&D) is similar to DVI-I only it’s slightly larger in size. It also handles digital and analog connections, and it’s used primarily on projectors. collapse

Black Box Explains... Speaker wire gauge.

Wire gauge (often shown as AWG, for American Wire Gauge) is a measure of the thickness of the wire. The more a wire is drawn or sized, the smaller its... more/see it nowdiameter will be. The lower the wire gauge, the thicker the wire.

For example, a 24 AWG wire is thinner than a 14 AWG wire. A lower AWG means longer transmission distance and better integrity. As a rule of thumb, power loss decreases as the wire size increases.

When it comes to choosing speaker cable, consider a few factors: distance, the type of system and amplifier you have, the frequencies of the signals being handled, and any specifications that the speaker manufacturer recommends.

For most home applications where you simply need to run cable from your stereo to speakers in the same room—or even behind the walls to other rooms—16 AWG cable is usually fine.

If you’re considering runs of more than 40 feet (12.1 m), consider using 14 AWG or even 12 AWG cable. They both offer better transmission and less resistance over longer distances. You should probably choose 12 AWG cable for high-end audio systems with higher power output or for low-frequency subwoofers. As a rule of thumb, power loss decreases as the wire size increases.

To terminate your cable, choose gold connectors. Because gold resists oxidation over time, gold connectors wear better and offer better peformance than other connectors do. collapse

Black Box Explains...Category 6.

Category 6 (CAT6)–Class E has a specified frequency of 250 MHz, significantly improved bandwidth capacity over CAT5e, and easily handles Gigabit Ethernet transmissions. In recent years, it has been the... more/see it nowcable of choice for new structured cabling systems. CAT6 supports 1000BASE-T and, depending on the installation, 10GBASE-T (10-GbE).

10-GbE over CAT6 introduces the problem of Alien Crosstalk (ANEXT), the unwanted coupling of signals between adjacent pairs and cables. Because ANEXT in CAT6 10-GbE networks is so dependent on installation practices, TSB-155 qualifies 10-GbE over CAT6 up to 55 meters and requires it to be 100% tested. To mitigate ANEXT in CAT6, it is recommended that you unbundle the cables and increase the separation between the cables.

You can always contact Black Box Tech Support to answer your cabling questions. Our techs can recommend cable testers and steer you in the right direction when you’re installing new cabling. And the advice is FREE! collapse

Black Box Explains...Connectors.

Click on the image below for a larger view.

Black Box Explains... Fibre Channel Technology.

What is Fibre Channel?
Fibre Channel is a set of communication standards designed to provide high-speed data transfer over a duplex, serial interface. It’s an open standard that supports multiple protocols... more/see it nowincluding higher-level protocols, such as FDDI, SCSI, HIPPI, and IPI, to manage data transfer.

Although it operates at a range of 133 Mbps to 4 Gbps, Fibre Channel is most commonly used at speeds of 1 or 2 Gbps. A working standards group recently announced that 10-Gbps speeds are expected in soon.

Why is it called Fibre Channel?
Originally, Fibre Channel was designed to support only fiber. When copper was added, the International Standards Organization (ISO) task force changed the spelling of fiber to fibre instead of renaming the technology.

Fibre Channel history.
Fibre Channel was first developed in 1988, and the American National Standards Institute (ANSI) formed a committee in 1989. To ensure interoperability, IBM®, Hewlett-Packard®, and Sun Microsystems® formed the FCSI (Fibre Channel Systems Initiative), a temporary organization, in 1992. FCSI later dissolved, and development was handed over to the FCA (Fibre Channel Association) in 1994. ANSI accepted Fibre Channel as a standard in 1994.

The best of both worlds.
This hardware-based standard combines the best of both channel and network communication methods into one I/O interface. It takes advantage of hardware-intensive, quicker point-to-point channel links that offer low overhead, such as SCSI bus technology, as well as the broad connectivity and long-distance benefits of software-intensive network technology.

Where Fibre Channel is used.
Fibre Channel is used to transfer large amounts of data quickly between supercomputers, mainframes, workstations, desktop computers, storage devices, displays, and other peripherals.

Fibre Channel offers reliability, scalability, congestion-free data flow, Gigabit bandwidth, compatibility with multiple topologies and protocols, flow control, self management, hot pluggability, speed, cost efficiency, loop resiliency, and distance. This makes it ideal for large data operations such as Internet/intranets, data warehousing, networked storage, integrated audio/video, real-time computing, on-line services, and imaging.

The most popular application for this technology right now is Storage Area Networks (SANs). Independent methods of centralized storage management within a SAN (e.g., RAID, tape backup or library, CD-ROM library) run more efficiently with a Fibre Channel backbone.

Fibre Channel topologies.
Fibre Channel can be connected by three methods. In all cases, the topology of the network is transparent to the attached devices.

Point to point is the simplest topology, which uses simple bidirectional links between two connected devices.

Arbitrated loop is the most common topology and the most complex. It is distributed, connecting up to 126 devices across shared media, and it offers shared bandwidth. Two ports on the loop establish a point-to-point, full-duplex connection through arbitration among all ports.

The cross-point or fabric-switched topology uses 24-bit addressing to connect up to 2 (to the 24th) devices in a cross-point switched configuration. This enables many devices to communicate at the same time and does not require shared media.

Fibre Channel layers.
Fibre Channel protocol is divided into five hierarchical layers: The three bottom layers, FC-0–FC-2, define the physical transmission standard. Layers FC-3 and FC-4 address interfaces with other network protocols.

FC-0: Media and interface layer that defines the physical link.

FC-1: Transmission encode/decode layer. Information is encoded 8 bits at a time into a 10-bit transmission character (8B/10B from IBM).

FC-2: Signaling protocol layer that serves as the transport mechanism performing basic signaling and framing. FC-2 includes the following classes of service:
• Class 1 provides dedicated connections. Intermix is an optional type of Class 1 service in which Class 1 frames are guaranteed a special amount of bandwidth.
• Class 2 is a frame-switched, connectionless service, also known as multiplex. It guarantees delivery and confirms receipt of traffic.
• Class 3 is a one-to-many, connectionless, frame-switched service. It’s similar to Class 2 except it uses buffer-to-buffer flow control and does not confirm frame delivery.

FC-3: Common-services layer that provides common services required for advanced features such as striping, hunt groups, and multicast.

FC-4: Upper layer for protocol mapping of network and channel data transmitting concurrently over the same physical interface.

Fibre Channel media.
Fibre Channel runs at up to 1 Gbps over copper or fiber, but for higher speeds, fiber is required. Copper-wire cable can be video coax, miniature coax, or, most commonly, shielded twisted pair with a DB9 or HSSDC connector. Fiber choices include 62.5- or 50-µm multimode and 7- or 9-µm single-mode fiber, all with an SC connector.

Other Fibre Channel equipment includes disk enclosures, drivers, extenders, hubs, interface converters, host bus adapters, routers, switches, and SCSI bridges. collapse

Black Box Explains...Loose-tube vs. tight-buffered fiber optic cable.

There are two styles of fiber optic cable construction: loose tube and tight buffered. Both contain some type of strengthening member, such as aramid yarn, stainless steel wire strands, or... more/see it noweven gel-filled sleeves. But each is designed for very different environments.

Loose tube cables, the older of the two cable types, are specifically designed for harsh outdoor environments. They protect the fiber core, cladding, and coating by enclosing everything within semi-rigid protective sleeves or tubes. In loose-tube cables that hold more than one optical fiber, each individually sleeved core is bundled loosely within an all-encompassing outer jacket.

Many loose-tube cables also have a water-resistant gel that surrounds the fibers. This gel helps protect them from moisture, so the cables are great for harsh, high-humidity environments where water or condensation can be a problem. The gel-filled tubes can expand and contract with temperature changes, too.

But gel-filled loose-tube cables are not the best choice when cable needs to be submerged or where it’s routed around multiple bends. Excess cable strain can force fibers to emerge from the gel.

Tight-buffered cables, in contrast, are optimized for indoor applications. Because they’re sturdier than loose-tube cables, they’re best suited for moderate-length LAN/WAN connections, long indoor runs, and even direct burial. Tight-buffered cables are also recommended for underwater applications.

Instead of a gel layer or sleeve to protect the fiber core, tight-buffered cables use a two-layer coating. One is plastic; the other is waterproof acrylate. The acrylate coating keeps moisture away from the cable, like the gel-filled sleeves do for loose-tube cables. But this acrylate layer is bound tightly to the plastic fiber layer, so the core is never exposed (as it can be with gel-filled cables) when the cable is bent or compressed underwater.

Tight-buffered cables are also easier to install because there’s no messy gel to clean up and they don’t require a fan-out kit for splicing or termination. You can crimp connectors directly to each fiber.

Want the best of both worlds? Try a hybrid, breakout-style fiber optic cable, which combines tight-buffered cables within a loose-tube housing. collapse

Black Box Explains...The MPO connector.

MPO stands for multifiber push-on connector. It is a connector for multifiber ribbon cable that generally contains 6, 8, 12, or 24 fibers. It is defined by IEC-61754-7 and EIA/TIA-604-5-D,... more/see it nowalso known as FOCIS 5. The MPO connector, combined with lightweight ribbon cable, represents a huge technological advance over traditional multifiber cables. It’s lighter, more compact, easier to install, and less expensive.

A single MPO connector replaces up to 24 standard connectors. This very high density means lower space requirements and reduced costs for your installation. Traditional, tight-buffered multifiber cable needs to have each fiber individually terminated by a skilled technician. But MPO fiber optic cable, which carries multiple fibers, comes preterminated. Just plug it in and you’re ready to go.BR>
MPO connectors feature an intuitive push-pull latching sleeve mechanism with an audible click upon connection and are easy to use. The MPO connector is similar to the MT-RJ connector. The MPO’s ferrule surface of 2.45 x 6.40 mm is slightly bigger than the MT-RJ’s, and the latching mechanism works with a sliding sleeve latch rather than a push-in latch.

The MPO connector can be either male or female. You can tell the male connector by the two alignment pins protruding from the end of the ferrule. The MPO ferrule is generally flat for multimode applications and angled for single-mode applications.

MPO connectors are also commonly called MTP® connectors, which is a registered trademark of US Conec. The MTP connector is an MPO connector collapse

Black Box Explains...Straight-pinned and crossover cable.

Straight-pinned cable has the most common type of pinning. The send and receive pairs are wired straight-through on either end of the cable.

Crossover cable is generally used for peer-to-peer connections.... more/see it nowThe send and receive pairs are crossed between Connector A to Connector B on either end of the cable. collapse

Black Box Explains...Choosing SCSI cables.

1. Quality. Your system’s performance depends on the quality of your SCSI cables. Without high-quality cables specifically designed for SCSI applications, you could be jeopardizing your SCSI lifeline. Inferior cables,... more/see it nowadapters, and terminators can cause random errors, data corruption, or even a system crash! Black Box® SCSI Cables and components are the absolute best-quality products. And they’re guaranteed for life.

2. Length. For peak network performance, make sure your cables are the right length. As cable runs get longer, signals weaken and are more susceptible to noise. Always use the shortest cable for the task. And stay within the SCSI-1 and SCSI-2 standards of six meters or three meters for Fast SCSI. Remember, this is the total length of the bus, including all internal and external cables. collapse

Black Box Explains...Fiber optic cable construction.

Fiber optic cable consists of a core, cladding, coating, strengthening fibers, and cable jacket.

This is the physical medium that transports optical data signals from an attached light source to... more/see it nowa receiving device. The core is a single continuous strand of glass or plastic that’s measured (in microns) by the size of its outer diameter. The larger the core, the more light the cable can carry.

All fiber optic cable is sized according to its core’s outer diameter.

The three multimode sizes most commonly available are 50, 62.5, and 100 microns. Single-mode cores are generally less than 9 microns.

This is a thin layer that surrounds the fiber core and serves as a boundary that contains the light waves and causes the refraction, enabling data to travel throughout the length of the fiber segment.

This is a layer of plastic that surrounds the core and cladding to reinforce the fiber core, help absorb shocks, and provide extra protection against excessive cable bends. These buffer coatings are measured in microns (µ) and can range from 250 to 900 microns.

Strengthening fibers
These components help protect the core against crushing forces and excessive tension during installation.

The materials can range from Kevlar® to wire strands to gel-filled sleeves.

Cable jacket
This is the outer layer of any cable. Most fiber optic cables have an orange jacket, although some types can have black or yellow jackets. collapse

Results 41-50 of 68 < 1 2 3 4 5 > >> 


Delivering superior technical support is our highest priority. Depending on the products or services we provide for you, please visit your appropriate support area.

Black Box 1-877-877-2269 Black Box Network Services