Loading


Categories (x) > Cables (x)
Content Type (x) > Black Box Explains (x)

Results 31-40 of 66 < 1 2 3 4 5 > >> 

Black Box Explains... Speaker wire gauge.

Wire gauge (often shown as AWG, for American Wire Gauge) is a measure of the thickness of the wire. The more a wire is drawn or sized, the smaller its... more/see it nowdiameter will be. The lower the wire gauge, the thicker the wire.

For example, a 24 AWG wire is thinner than a 14 AWG wire. A lower AWG means longer transmission distance and better integrity. As a rule of thumb, power loss decreases as the wire size increases.

When it comes to choosing speaker cable, consider a few factors: distance, the type of system and amplifier you have, the frequencies of the signals being handled, and any specifications that the speaker manufacturer recommends.

For most home applications where you simply need to run cable from your stereo to speakers in the same room—or even behind the walls to other rooms—16 AWG cable is usually fine.

If you’re considering runs of more than 40 feet (12.1 m), consider using 14 AWG or even 12 AWG cable. They both offer better transmission and less resistance over longer distances. You should probably choose 12 AWG cable for high-end audio systems with higher power output or for low-frequency subwoofers. As a rule of thumb, power loss decreases as the wire size increases.

To terminate your cable, choose gold connectors. Because gold resists oxidation over time, gold connectors wear better and offer better peformance than other connectors do. collapse


Black Box Explains…HDMI

The High-Definition Multimedia Interface (HDMI®) is the first digital interface to combine uncompressed high-definition video, up to eight channels of uncompressed digital audio, and intelligent format and command data in... more/see it nowa single cable. It is now the de facto standard for consumer electronics and high-definition video and is gaining ground in the PC world.

HDMI supports standard, enhanced, and high-definition video. It can carry video signals at resolutions beyond 1080p at 60 Hz (Full HD) up to 4K x 2K (4096 x 2160) as well as 3D TV.

HDMI also provides superior audio clarity. It supports multiple audio formats from standard stereo to multichannel surround sound.

HDMI offers an easy, standardized way to set up home theaters and AV equipment over one cable. Use it to connect audio/video equipment, such as DVD players, set-top boxes, and A/V receivers with an audio and/or video equipment, such as a digital TVs, PCs, cameras, and camcorders. It also supports multiple audio formats from standard stereo to multichannel surround sound. Plus it provides two-way communications between the video source and the digital TV, enabling simple remote, point-and-click configurations.

NOTE: HDMI also supports HDCP (High-bandwidth Digital Content Protection), which prevents the copying of digital audio and video content transmitted over HDMI able. If you have a device between the source and the display that supports HDMI but not HDCP, your transmission won't work, even over an HDMI cable.

HDMI offers significant benefits over older analog A/V connections. It's backward compatible with DVI equipment, such as PCs. TVs, and other electronic devices using the DVI standard. A DVI-to-HDMI adapter can be used without a loss of video quality. Because DVI only supports video signals, no audio, the DVI device simply ignores the extra audio data.

HDMI standards
The HDMI standard was introduced in December 2002. Since then, there have been a number of versions with increasing bandwidth and/or transmission capabilities.

With the introduction of HDMI (June 2006), more than doubled the bandwidth from 4.95 Gbps to 10.2 Gbps (340 MHz). It offers support for 16-bit color, increased refresh rates, and added support for 1440p WQXGA. It also added support for xvYCC color space and Dolby True HD and DTS-HD Master Audio standards. Plus it added features to automatically correct audio video synchronization. Finally, it added a mini connector.

HDMI 1.3a (November 2006), HDMI 1.3b (March 2007, HDMI 1.3b1 (November 2007), and 1.3c (August 2008) added termination recommendations, control commands, and other specification for testing, etc.

HDMI 1.4 (May 2009) increased the maximum resolution to 4Kx 2K (3840 x 2160 p/24/25/30 Hz). It added an HDMI Ethernet channel for a 100-Mbps connection between two HDMI devices. Other advancements include: an Audio Return Channel, stereoscopic 3D over HDMI (HDMI 1.3 devices will only support this for 1080i), an automotive connection system, and the micro HDMI connector.

HDMI 1.4a (March 2010) adds two additional 3D formats for broadcast content.

HDMI 2.0 (August 2013), which is backwards compatible with earlier versions of the HDMI specification, significantly increases bandwidth up to 18 Gbps and adds key enhancements to support market requirements for enhancing the consumer video and audio experience.

HDMI 2.0 also includes the following advanced features:

  • Resolutions up to 4K@50/60 (2160p), which is four times the clarity of 1080p/60 video resolution, for the ultimate video experience.
  • Up to 32 audio channels for a multi-dimensional immersive audio experience.
  • Up to 1536Hz audio sample frequency for the highest audio fidelity.
  • Simultaneous delivery of dual video streams to multiple users on the same screen.
  • Simultaneous delivery of multi-stream audio to multiple users (up to four).
  • Support for the wide angle theatrical 21:9 video aspect ratio.
  • Dynamic synchronization of video and audio streams.
  • CEC extensions provide more expanded command and control of consumer electronics devices through a single control point.

  • HDMI Cables
  • Standard HDMI Cable: 1080i and 720p
  • Standard HDMI Cable with Ethernet
  • Automotive HDMI Cable
  • High Speed HDMI Cable: 1080p, 4K, 3D and Deep Color
  • High Speed HDMI Cable with Ethernet

  • HDMI connectors
    There are four HDMI connector types.
    Type A: 19 pins. It supports all SDTV, EDTV, and HDTV modes. It is electrically compatible with single-link DVI-D. HDMI 1.0 specification.

    Type B: 29 pins. Offers double the video bandwidth of Type A. Use for very high-resolution displays such as WQUXGA. It's electronically compatible with dual-link DVI-D. HDMI 1.0 specification.

    Type C Mini: 19 pins. This mini connector is intended for portable devices. It is smaller than Type A but has the same pin configuration and can be connected to Type A cable via an adapter or adapter cable. Type C is defined in HDMI 1.3.

    Type D Micro: 19 pins. This also has the 19-pin configuration of Type A but is about the size of a micro-USB connector. Type D is defined in HDMI 1.4.

    HDMI cable
    Recently, HDMI Licensing, LLC announced that all able would be tested as either Standard or High-Speed cables. Referring to cables based on HDMI standard (e.g. 1.2, 1.3 etc.) is no longer allowed.

    Standard HDMI cable is designed for use with digital broadcast TV, cable TV, satellites TV, Blu-ray, and upscale DVD payers to reliably transmit up to 1080i or 720p video (or the equivalent of 75 MHz or up to 2.25 Gbps).

    High-Speed HDMI reliably transmits video resolutions of 1080p and beyond, including advanced display technologies such as 4K, 3D, and Deep Color. High-Speed HDMI is the recommended cable for 1080p video. It will perform at speeds of 600 MHz or up to 18 Gbps, the highest bandwidth urgently available over an HDMI cable.

    HDCP copy protection
    HDMI also supports High-bandwidth Digital Content Protection (HDCP), which prevents the copying of content transmitted over HDMI cable. If you have a device between the source and the display that supports HDMI but not HDCP, your transmission won’t work, even over an HDMI cable. Additional resources and licensing information is available at HDMI.org.

    collapse


    Black Box Explains...RS-232.

    RS-232, also known as RS-232C and TIA/EIA-232-E, is a group of electrical, functional, and mechanical specifications for serial interfaces between computers, terminals, and peripherals. The RS-232 standard was developed by... more/see it nowthe Electrical Industries Association (EIA), and defines requirements for connecting data communications equipment (DCE)—modems, converters, etc.—and data terminal equipment (DTE)—computers, controllers, etc.) devices. RS-232 transmits data at speeds up to 115 Kbps and over distances up to 50 feet (15.2 m).

    The standard, which is functionally equivalent to ITU V.24/V.28, specifies the workings of the interface, circuitry, and connector pinning. Both sync and async binary data transmission fall under RS-232. Although RS-232 is sometimes still used to transmit data from PCs to peripheral devices, the most common uses today are for network console ports and for industrial devices.

    Even though RS-232 is a “standard,” you can’t necessarily expect seamless communication between two RS-232 devices. Why? Because different devices have different circuitry or pinning, and different wires may be designated to perform different functions.

    The typical RS-232 connector is DB25, but some PCs and other data communication devices have DB9 connectors and many newer devices have RJ-45 RS-232 ports. To connect 9-pin PC ports or RJ-45 to devices with 25-pin connectors, you will require a simple adapter cable. collapse


    Black Box Explains...HDBaseT

    HDBaseT is a connectivity standard for distribution of uncompressed HD multimedia content. HDBaseT technology converges full HD digital video, audio, 100BaseT Ethernet, power over cable, and various control signals through... more/see it nowa single LAN cable. This is referred to as 5Play™, a feature set that sets HDBaseT technology above the current standard.

    Video
    HDBaseT delivers full HD/3D and 2K/4K uncompressed video to a network of devices or to a single device (point-to-point). HDBaseT supports all key HDMI 1.4 features, including EPG, Consumer Electronic Controls (CEC), EDID, and HDCP. The unique video coding scheme ensure the highest video quality at zero latency.

    Audio
    As with the video, HDBaseT audio is passed through from the HDMI chipset. All standard formats are supported, including Dolby Digital, DTS, Dolby TrueHD, DTS HD-Master Audio.

    Ethernet
    HDBaseT supports 100Mb Ethernet, which enables communications between electronic devices including televisions, sound systems, computers, and more. Additionally, Ethernet support enables access to any stored multimedia content (such as video or music streaming).

    Control
    HDBaseT's wide range of control options include CEC, RS-232, and infrared (IR). IP control is enabled through Ethernet channel support.

    Power
    The same cable that delivers video, audio, Ethernet, and control can deliver up to 100W of DC power. This means users can place equipment where one wants to, not just those locations with an available power source. HDBaseT Architecture
    HDBaseT sends video, audio, Ethernet, and control from the source to the display, but only transfers 100Mb of data from display to source (Ethernet and control data). The asymmetric nature of HDBaseT is based on a digital signal processing (DSP) engine and an application front end (AFE) architecture.

    HDBaseT uses a proprietary version of Pulse Amplitude Modulation (PAM) technology, where digital data is represented as a coding scheme using different levels of DC voltage at high rates. This special coding provides a better transfer quality to some kinds of data without the need to "pay" the protecting overhead for the video content, which consumes most of the bandwidth. HDBaseT PAM technology enables the 5Play feature-set to be maintained over a single 330-foot (100 m) CAT cable without the electrical characteristics of the wire affecting performance.

    collapse


    Black Box Explains...10GBASE-T standard.

    In June 2006, the IEEE approved the standard for 10 Gigabit/sec Ethernet, or 10GBASE-T (10-GbE). 10-GbE transmission requires a bandwidth of 500 MHz.

    The 10-GbE standards.
    The cabling industry is developing... more/see it nowtwo different standards that can be used in 10-GbE applications. One is for use with Category 6 (CAT6) cable, and one is for Augmented Category 6 (CAT6a).

    Alien Crosstalk.
    Before discussing the standards, a definition of Alien Crosstalk is needed.

    Alien Crosstalk (ANEXT) is a critical measurement unique to 10-GbE systems. Crosstalk, measured in 10/100/1000BASE-T systems, is the mixing of signals between wire pairs within a cable. Alien Crosstalk is the measurement of the signal coupling between wire pairs in different, adjacent cables.

    The amount of ANEXT depends on a number of factors, including the promixity of adjacent cables and connectors, the cable length, cable twist density, and EMI. Patch panels and connecting hardware are also affected by ANEXT.

    With ANEXT, the affected cable is called the disturbed or victim cable. The surrounding cables are the disturbers.

    10-GbE using CAT6.
    The first set of standards defines cabling performance when using Category 6/Class E cabling for 10-GbE applications. The TIA/EIA version will be the Technical Systems Bulletin 155 (TSB 155). ISO/IEC TR 24750 is a technical report to be used for measuring existing Class E systems.

    No matter what the cable length is, CAT6 cable must meet 10-GbE electrical and ANEXT specifications up to 500 MHz. However, the CAT6 standard now specifies measurements only to 250 MHz, and it does not have an ANEXT requirement. There is no guarantee CAT6 can support a 10-GbE system. But the TSB provides guidelines for ways to help mitigate ANEXT. One way to lessen or eliminate ANEXT is to use shielded equipment and cables. Another way is to follow installation guidelines, such as using non-adjacent patch panels, separating equipment cords, unbundling horizontal cabling, etc.

    10GbE using CAT6a.
    The second set of standards will define Augmented Category 6 (CAT6a) and Augmented Class E (Class Ea) cabling. The newer, augmented cabling systems are designed to support 10-GbE over a 100-meter horizontal channel.

    The TIA/EIA version is in draft and will be published as ANSI/TIA/EIA-568B.2-AD10. It recognizes both UTP and STP CAT6a systems. It also extends CAT6 electrical parameters such as NEXT, FEXT, return loss, insertion loss, and more to 500 MHz. It specifies near- and far-end Alien Crosstalk (ANEXT, AFEXT) to 500 MHz. It also goes beyond IEEE 802.3an by establishing the electrical requirements for the permanent link and cabling components. The ISO Class Ea standard will be published in a new edition of the 11801 standard.

    These standards specify requirements for each component in the channel, such as cable and connecting hardware, as well as for the permanent link and the channel. collapse


    Black Box Explains…OM3 and OM4.

    There are different categories of graded-index multimode fiber optic cable. The ISO/IEC 11801 Ed 2.1:2009 standard specifies categories OM1, OM2, and OM3. The TIA/EIA recognizes OM1, OM2, OM3, and OM4.... more/see it nowThe TIA/EIA ratified OM4 in August 2009 (TIA/EIA 492-AAAD). The IEEE ratified OM4 (802.ba) in June 2010.

    OM1 specifies 62.5-micron cable and OM2 specifies 50-micron cable. These are commonly used in premises applications supporting Ethernet rates of 10 Mbps to 1 Gbps. They are also typically used with LED transmitters. OM1 and OM2 cable are not suitable though for today's higher-speed networks.

    OM3 and OM4 are both laser-optimized multimode fiber (LOMMF) and were developed to accommodate faster networks such as 10, 40, and 100 Gbps. Both are designed for use with 850-nm VCSELS (vertical-cavity surface-emitting lasers) and have aqua sheaths.

    OM3 specifies an 850-nm laser-optimized 50-micron cable with a effective modal bandwidth (EMB) of 2000 MHz/km. It can support 10-Gbps link distances up to 300 meters. OM4 specifies a high-bandwidth 850-nm laser-optimized 50-micron cable an effective modal bandwidth of 4700 MHz/km. It can support 10-Gbps link distances of 550 meters. 100-Gbps distances are 100 meters and 150 meters, respectively. Both rival single-mode fiber in performance while being significantly less expensive to implement.

    OM1 and 2 are made with a different process than OM3 and 4. Non-laser-optimized fiber cable is made with a small defect in the core, called an index depression. LED light sources are commonly used with these cables.

    OM3 and 4 are manufactured without the center defect. As networks migrated to higher speeds, VCSELS became more commonly used rather than LEDs, which have a maximum modulation rate of 622 Mbps. Because of that, LEDs can’t be turned on and off fast enough to support higher-speed applications. VCSELS provided the speed, but unfortunately when used with older OM1 and 2 cables, required mode-conditioning launch cables. Thus manufacturers changed the production process to eliminate the center defect and enable OM3 and OM4 cables to be used directly with the VCSELS. OM3/OM4 Comparison
    850 nm High Performance EMB (MHz/km)

    OM3: 2000

    OM4: 4700


    850-nm Ethernet Distance
    1-GbE
    OM3: 1000 m

    OM4: 1000 m


    10-GbE
    OM3: 300 m

    OM4: 550 m


    40-GbE
    OM3: 100 m

    OM4: 150 m


    100-GbE
    OM3: 100 m

    OM4: 150 m

    collapse


    Black Box Explains…Digital Visual Interface (DVI) connectors.

    The DVI (Digital Video Interface) technology is the standard digital transfer medium for computers while the HDMI interface is more commonly found on HDTVs, and other high-end displays.

    The Digital... more/see it nowVisual Interface (DVI) standard is based on transition-minimized differential signaling (TMDS). There are two DVI formats: Single-Link and Dual-Link. Single-link cables use one TMDS-165 MHz transmitter and dual-link cables use two. The dual-link cables double the power of the transmission. A single-link cable can transmit a resolution ?of 1920 x 1200 vs. 2560 x 1600 for a dual-link cable.

    There are several types of connectors: ?DVI-D, DVI-I, DVI-A, DFP, and EVC.

  • DVI-D is a digital-only connector for use between a digital video source and monitors. DVI-D eliminates analog conversion and improves the display. It can be used when one or both connections are DVI-D.
  • DVI-I (integrated) supports both digital and analog RGB connections. It can transmit either a digital-to-digital signals or an analog-to-analog signal. It is used by some manufacturers on products instead of separate analog and digital connectors. If both connectors are DVI-I, you can use any DVI cable, but a DVI-I is recommended.
  • DVI-A (analog) is used to carry an DVI signal from a computer to an analog VGA device, such as a display. If one or both of your connections are DVI-A, use this cable. ?If one connection is DVI and the other is ?VGA HD15, you need a cable or adapter ?with both connectors.
  • DFP (Digital Flat Panel) was an early digital-only connector used on some displays.
  • EVC (also known as P&D, for ?Plug & Display), another older connector, handles digital and analog connections.
  • collapse


    Black Box Explains... Crosstalk.

    One of the most important cable measurements is Near-End Crosstalk (NEXT). It’s signal interference from one pair that adversely affects another pair on the same end.

    Not only can crosstalk... more/see it nowoccur between adjacent wire pairs (“pair-to-pair NEXT“), but all other pairs in a UTP cable can also contribute their own levels of both near-end and far-end crosstalk, multiplying the adverse effects of this interference onto a transmitting or receiving wire pair.

    Because such compounded levels of interference can prove crippling in high-speed networks, some cable manufacturers have begun listing Power Sum NEXT (PS-NEXT), FEXT, ELFEXT, and PS-ELFEXT ratings for their CAT5e and CAT6 cables. Here are explanations of the different types of measurements:

    NEXT measures an unwanted signal transmitted from one pair to another on the near end.

    PS-NEXT (Power Sum crosstalk) is a more rigorous crosstalk measurement that includes the total sum of all interference that can possibly occur between one pair and all the adjacent pairs in the same cable sheath. It measures the unwanted signals from multiple pairs at the near end onto another pair at the near end.

    FEXT (Far-End crosstalk) measures an unwanted signal from a pair transmitting on the near end onto a pair at the far end. This measurement takes full-duplex operation into account where signals are generated simultaneously on both ends.

    ELFEXT (Equal-Level Far-End Crosstalk) measures the FEXT in relation to the received signal level measured on that same pair. It basically measures interference without the effects of attenuation—the equal level.

    PS-ELFEXT (Power Sum Equal-Level Far-End Crosstalk), an increasingly common measurement, measures the total sum of all intereference from pairs on the far end to a pair on the near end without the effects of attenuation. collapse


    Black Box Explains...Category 6.

    Category 6 (CAT6)–Class E has a specified frequency of 250 MHz, significantly improved bandwidth capacity over CAT5e, and easily handles Gigabit Ethernet transmissions. In recent years, it has been the... more/see it nowcable of choice for new structured cabling systems. CAT6 supports 1000BASE-T and, depending on the installation, 10GBASE-T (10-GbE).

    10-GbE over CAT6 introduces the problem of Alien Crosstalk (ANEXT), the unwanted coupling of signals between adjacent pairs and cables. Because ANEXT in CAT6 10-GbE networks is so dependent on installation practices, TSB-155 qualifies 10-GbE over CAT6 up to 55 meters and requires it to be 100% tested. To mitigate ANEXT in CAT6, it is recommended that you unbundle the cables and increase the separation between the cables.

    You can always contact Black Box Tech Support to answer your cabling questions. Our techs can recommend cable testers and steer you in the right direction when you’re installing new cabling. And the advice is FREE! collapse


    Black Box Explains...Choosing SCSI cables.

    1. Quality. Your system’s performance depends on the quality of your SCSI cables. Without high-quality cables specifically designed for SCSI applications, you could be jeopardizing your SCSI lifeline. Inferior cables,... more/see it nowadapters, and terminators can cause random errors, data corruption, or even a system crash! Black Box® SCSI Cables and components are the absolute best-quality products. And they’re guaranteed for life.

    2. Length. For peak network performance, make sure your cables are the right length. As cable runs get longer, signals weaken and are more susceptible to noise. Always use the shortest cable for the task. And stay within the SCSI-1 and SCSI-2 standards of six meters or three meters for Fast SCSI. Remember, this is the total length of the bus, including all internal and external cables. collapse

    Results 31-40 of 66 < 1 2 3 4 5 > >> 
    Close

    Support

    Delivering superior technical support is our highest priority. Depending on the products or services we provide for you, please visit your appropriate support area.



     

    You have added this item to your cart.

    Important message about your cart:

    You requested more of "" than the currently available. The quantity has been changed to them maximum quantity available. View your cart.

    Print
    Black Box 1-800-316-7107 Black Box Network Services