Categories (x) > Cables > Fiber Patch Cables (x)

Results 11-20 of 67 < 1 2 3 4 5 > >> 
  • Pdf Drawing... 
  • 10-Gigabit Multimode, 50-Micron Fiber Optic Patch Cables, Zipcord, PVC, LC%X96LC, PDF Dra
    PDF Drawing of EFNT010-LCLC Series (Version 1)

Black Box Explains...Multimode vs. single-mode Fiber.

Multimode, 50- and 62.5-micron cable.
Multimode cable has a large-diameter core and multiple pathways of light. It comes in two core sizes: 50-micron and 62.5-micron.

Multimode fiber optic cable can be... more/see it nowused for most general data and voice fiber applications, such as bringing fiber to the desktop, adding segments to an existing network, and in smaller applications such as alarm systems. Both 50- and 62.5-micron cable feature the same cladding diameter of 125 microns, but 50-micron fiber cable features a smaller core (the light-carrying portion of the fiber).

Although both can be used in the same way, 50-micron cable is recommended for premise applications (backbone, horizontal, and intrabuilding connections) and should be considered for any new construction and installations. Both also use either LED or laser light sources. The big difference between the two is that 50-micron cable provides longer link lengths and/or higher speeds, particularly in the 850-nm wavelength.

Single-mode, 8–10-micron cable.
Single-mode cable has a small, 8–10-micron glass core and only one pathway of light. With only a single wavelength of light passing through its core, single-mode cable realigns the light toward the center of the core instead of simply bouncing it off the edge of the core as multimode does.

Single-mode cable provides 50 times more distance than multimode cable. Consequently, single-mode cable is typically used in long-haul network connections spread out over extended areas, including cable television and campus backbone applications. Telcos use it for connections between switching offices. Single-mode cable also provides higher bandwidth, so you can use a pair of single-mode fiber strands full-duplex for up to twice the throughput of multimode fiber.

Specification comparison:

50-/125-Micron Multimode Fiber

850-nm Wavelength:
Bandwidth: 500 MHz/km;
Attenuation: 3.5 dB/km;
Distance: 550 m;

1300-nm Wavelength:
Bandwidth: 500 MHz/km;
Attenuation: 1.5 dB/km;
Distance: 550 m

62.5-/125-Miron Multimode Fiber

850-nm Wavelength:
Bandwidth: 160 MHz/km;
Attenuation: 3.5 dB/km;
Distance: 220 m;

1300-nm Wavelength:
Bandwidth: 500 MHz/km;
Attenuation: 1.5 dB/km;
Distance: 500 m

8–10-Micron Single-Mode Fiber

Premise Application:
Wavelength: 1310 nm and 1550 nm;
Attenuation: 1.0 dB/km;

Outside Plant Application:
Wavelength: 1310 nm and 1550 nm;
Attenuation: 0.1 dB/km collapse

Product Data Sheets (pdf)...10-Gigabit Multimode, 50-Micron Fiber Optic Bulk Cables

Black Box Explains... Pulling eyes and fiber cable.

Fiber optic cable can be damaged if pulled improperly. Broken or cracked fiber, for example, can result from pulling on the fiber core or jacket instead of the strength member.... more/see it nowAnd too much tension or stress on the jacket, as well as too tight of a bend radius, can damage the fiber core. If the cable’s core is harmed, the damage can be difficult to detect.

Once the cable is pulled successfully, damage can still occur during the termination phase. Field termination can be difficult and is often done incorrectly, resulting in poor transmission. One way to eliminate field termination is to pull preterminated cable. But this can damage the cable as well because the connectors can be knocked off during the pulling process. The terminated cable may also be too bulky to fit through ducts easily. To help solve all these problems, use preterminated fiber optic cable with a pulling eye. This works best for runs up to 2000 feet (609.6 m).

The pulling eye contains a connector and a flexible, multiweave mesh-fabric gripping tube. The latched connector is attached internally to the Kevlar®, which absorbs most of the pulling tension. Additionally, the pulling eye’s mesh grips the jacket over a wide surface area, distributing any remaining pulling tension and renders it harmless. The end of the gripping tube features one of three different types of pulling eyes: swivel, flexible, or breakaway.

Swivel eyes enable the cable to go around bends without getting tangled. They also prevent twists in the pull from being transferred to the cable. A flexible eye follows the line of the pull around corners and bends, but it’s less rigid. A breakaway eye offers a swivel function but breaks if the tension is too great. We recommend using the swivel-type pulling eye.

A pulling eye enables all the fibers to be preterminated to ensure better performance. The terminated fibers are staggered inside the gripping tube to minimize the diameter of the cable. This enables the cable to be pulled through the conduit more easily. collapse

Black Box Explains...The MPO connector.

MPO stands for multifiber push-on connector. It is a connector for multifiber ribbon cable that generally contains 6, 8, 12, or 24 fibers. It is defined by IEC-61754-7 and EIA/TIA-604-5-D,... more/see it nowalso known as FOCIS 5. The MPO connector, combined with lightweight ribbon cable, represents a huge technological advance over traditional multifiber cables. It’s lighter, more compact, easier to install, and less expensive.

A single MPO connector replaces up to 24 standard connectors. This very high density means lower space requirements and reduced costs for your installation. Traditional, tight-buffered multifiber cable needs to have each fiber individually terminated by a skilled technician. But MPO fiber optic cable, which carries multiple fibers, comes preterminated. Just plug it in and you’re ready to go.BR>
MPO connectors feature an intuitive push-pull latching sleeve mechanism with an audible click upon connection and are easy to use. The MPO connector is similar to the MT-RJ connector. The MPO’s ferrule surface of 2.45 x 6.40 mm is slightly bigger than the MT-RJ’s, and the latching mechanism works with a sliding sleeve latch rather than a push-in latch.

The MPO connector can be either male or female. You can tell the male connector by the two alignment pins protruding from the end of the ferrule. The MPO ferrule is generally flat for multimode applications and angled for single-mode applications.

MPO connectors are also commonly called MTP® connectors, which is a registered trademark of US Conec. The MTP connector is an MPO connector collapse

Black Box Explains...10-Gigabit Ethernet.

10-Gigabit Ethernet (10-GbE), ratified in June 2002, is a logical extension of previous Ethernet versions. 10-GbE was designed to make the transition from LANs to Wide Area Networks (WANs) and... more/see it nowMetropolitan Area Networks (MANs). It offers a cost-effective migration for high-performance and long-haul transmissions at up to 40 kilometers. Its most common application now is as a backbone for high-speed LANs, server farms, and campuses.

10-GbE supports existing Ethernet technologies. It uses the same layers (MAC, PHY, and PMD), and the same frame sizes and formats. But the IEEE 802.3ae spec defines two sets of physical interfaces: LAN (LAN PHY) and WAN (WAN PHY). The most notable difference between 10-GbE and previous Ethernets is that 10-GbE operates in full-duplex only and specifies fiber optic media.

At a glance—Gigabit vs. 10-Gigabit Ethernet

• CSMA/CD + full-duplex
• Leveraged Fibre Channel PMDs
• Reused 8B/10B coding
• Optical/copper media
• Support LAN to 5 km
• Carrier extension

10-Gigabit Ethernet
• Full-duplex only
• New optical PMDs
• New coding scheme 64B/66B
• Optical (developing copper)
• Support LAN to 40 km
• Throttle MAC speed for WAN
• Use SONET/SDH as Layer 1 transport

The alphabetical coding for 10-GbE is as follows:
S = 850 nm
L = 1310 nm
E = 1550 nm
X = 8B/10B signal encoding
R = 66B encoding
W = WIS interface (for use with SONET).

10GBASE-SR — Distance: 300 m; Wavelength: 850 nm; Cable: Multimode
10GBASE-SW — Distance: 300 m; Wavelength: 850 nm; Cable: Multimode
10GBASE-LR — Distance: 10 km; Wavelength: 1310 nm; Cable: Single-Mode
10GBASE-LW — Distance: 10 km; Wavelength: 1310 nm; Cable: Single-Mode
10GBASE-LX4 — Distance: Multimode 300 m, Single-Mode 10 km; Wavelength: Multimode 1310 nm, Single-Mode WWDM; Cable: Multimode or Single-Mode
10GBASE-ER — Distance: 40 km; Wavelength: 1550 nm; Cable: Single-Mode
10GBASE-EW — Distance: 40 km; Wavelength: 550 nm; Cable: Single-Mode
10GBASE-CX4* — Distance: 15 m; Wavelength: Cable: 4 x Twinax
10GBASE-T* — Distance: 25–100 m; Wavelength: Cable: Twisted Pair
* Proposed for copper. collapse

  • Manual... 
  • EFN110-xxxM-LCLC
  • Pdf Drawing... 
  • Multimode, 50-Micron Duplex Fiber Optic Cable, PVC, LC%X96ST PDF Drawing
    PDF Drawing for EFN6022 Series (Version 1)
  • Pdf Drawing... 
  • Single-Mode, 9.0-Micron Duplex Fiber Optic Cable PDF Drawing
    PDF Drawing for EFN310-SCMT Series (1)
  • Pdf Drawing... 
  • Premium Ceramic, Multimode, 62.5-Micron Fiber Optic Patch Cable PDF Drawing
    PDF Drawing for EFN110-MTMT Series (Version 1)
Results 11-20 of 67 < 1 2 3 4 5 > >> 


Delivering superior technical support is our highest priority. Depending on the products or services we provide for you, please visit your appropriate support area.

Black Box 1-877-877-2269 Black Box Network Services