Loading


Categories (x) > Cables > Fiber Patch Cables > 50-Micron OM3 Multimode (x)

Results 1-10 of 22 1 2 3 > 

Black Box Explains...10-Gigabit Ethernet.

10-Gigabit Ethernet, sometimes called 10-GbE or 10 GigE, is the latest improvement on the Ethernet standard, ratified in 2003 for fiber as the 802.3ae standard, in 2004 for twinax cable... more/see it now as the 802.3ak standard, and in 2006 for UTP as the 802.3an standard.

10-Gigabit Ethernet offers ten times the speed of Gigabit Ethernet. This extraordinary throughput plus compatibility with existing Ethernet standards has resulted in 10-Gigabit Ethernet quickly becoming the new standard for high-speed network backbones, largely supplanting older technologies such as ATM over SONET. 10-Gigabit Ethernet has even made inroads in the area of storage area networks (SAN) where Fibre Channel has long been the dominant standard. This new Ethernet standard offers a fast, simple, relatively inexpensive way to incorporate super high-speed links into your network.

Because 10-Gigabit Ethernet is simply an extension of the existing Ethernet standards family, it’s a true Ethernet standard—it’s totally backwards compatible and retains full compatibility with 10-/100-/1000-Mbps Ethernet. It has no impact on existing Ethernet nodes, enabling you to seamlessly upgrade your network with straightforward upgrade paths and scalability.

10-Gigabit Ethernet is less costly to install than older high-speed standards such as ATM. And not only is it relatively inexpensive to install, but the cost of network maintenance and management also stays low—10-Gigabit Ethernet can easily be managed by local network administrators.

10-Gigabit Ethernet is also more efficient than other high-speed standards. Because it uses the same Ethernet frames as earlier Ethernet standards, it can be integrated into your network using switches rather than routers. Packets don’t need to be fragmented, reassembled, or translated for data to get through.

Unlike earlier Ethernet standards, which operate in half- or full-duplex, 10-Gigabit Ethernet operates in full-duplex only, eliminating collisions and abandoning the CSMA/CD protocol used to negotiate half-duplex links. It maintains MAC frame compatibility with earlier Ethernet standards with 64- to 1518-byte frame lengths. The 10-Gigabit standard does not support jumbo frames, although there are proprietary methods for accommodating them.

Fiber 10-Gigabit Ethernet standards
There are two groups of physical-layer (PHY) 10-Gigabit Ethernet standards for fiber: LAN-PHY and WAN-PHY.

LAN-PHY is the most common group of standards. It’s used for simple switch and router connections over privately owned fiber and uses a line rate of 10.3125 Gbps with 64B/66B encoding.

The other group of 10-Gigabit Ethernet standards, WAN-PHY, is used with SONET/SDH interfaces for wide area networking across cities, states—even internationally.

LAN-PHY
10GBASE-SR (Short-Range) is a serial short-range fiber standard that operates over two multimode fibers. It has a range of 26 to 82 meters (85 to 269 ft.) over legacy 62.5-µm 850-nm fiber and up to 300 meters (984 ft.) over 50-µm 850-nm fiber.

10GBASE-LR (Long-Range) is a serial long-range 10-Gbps Ethernet standard that operates at ranges of up to 25 kilometers (15.5 mi.) on two 1310-nm single-mode fibers.

10GBASE-ER (Extended-Range) is similar to 10GBASE-LR but supports distances up to 40 kilometers (24.9 mi.) over two 1550-nm single-mode fibers.

10GBASE-LX4 uses Coarse-Wavelength Division Multiplexing (CWDM) to achieve ranges of 300 meters (984 ft.) over two legacy 850-nm multimode fibers or up to 10 kilometers (6.2 mi.) over two 1310-nm single-mode fibers. This standard multiplexes four data streams over four different wavelengths in the range of 1300 nm. Each wavelength carries 3.125 Gbps to achieve 10-Gigabit speed.

WAN-PHY
In fiber-based Gigabit Ethernet, the 10GBASE-SR, 10GBASE-LR, and 10GBASE-ER LAN-PHY standards have WAN-PHY equivalents called 10GBASE-SW, 10GBASE-LW, and 10GBASE-EW. There is no WAN-PHY standard corresponding to 10GBASE-LX4.

WAN-PHY standards are designed to operate across high-speed systems such as SONET and SDH. These systems are often telco operated and can be used to provide high-speed data delivery worldwide. WAN-PHY 10-Gigabit Ethernet operates within SDH and SONET using an SDH/SONET frame running at 9.953 Gbps without the need to directly map Ethernet frames into SDH/SONET.

WAN-PHY is transparent to data—from the user’s perspective it looks exactly the same as LAN-PHY.

10-Gigabit Ethernet over Copper
10GBASE-CX4
10GBASE-CX4 is a standard that enables Ethernet to run over CX4 cable, which consists of four twinaxial copper pairs bundled into a single cable. CX4 cable is also used in high-speed InfiniBand® and Fibre Channel storage applications. Although CX4 cable is somewhat less expensive to install than fiber optic cable, it’s limited to distances of up to 15 meters. Because this standard uses such a specialized cable at short distances, 10GBASE-CX4 is generally used only in limited data center applications such as connecting servers or switches.

10GBASE-Kx
10GBASE-Kx is backplane 10-Gigabit Ethernet and consists of two standards. 10GBASE-KR is a serial standard compatible with 10GBASE-SR, 10GBASE-LR, and 10GBASE-ER. 10GBASE-KX4 is compatible with 10GBASE-LX4. These standards use up to 40 inches of copper printed circuit board with two connectors in place of cable. These very specialized standards are used primarily for switches, routers, and blade servers in data center applications.

10GBASE-T
10GBASE-T is the 10-Gigabit standard that uses the familiar shielded or unshielded copper UTP cable. It operates at distances of up to 55 meters (180 ft.) over existing Category 6 cabling or up to 100 meters (328 ft.) over augmented Category 6, or “6a,” cable, which is specially designed to reduce crosstalk between UTP cables. Category 6a cable is somewhat bulkier than Category 6 cable but retains the familiar RJ-45 connectors.

To send data at these extremely high speeds across four-pair UTP cable, 10GBASE-T uses sophisticated digital signal processing to suppress crosstalk between pairs and to remove signal reflections.

10-Gigabit Ethernet Applications
> 10-Gigabit Ethernet is already being deployed in applications requiring extremely high bandwidth:
> As a lower-cost alternative to Fibre Channel in storage area networking (SAN) applications.
> High-speed server interconnects in server clusters.
> Aggregation of Gigabit segments into 10-Gigabit Ethernet trunk lines.
> High-speed switch-to-switch links in data centers.
> Extremely long-distance Ethernet links over public SONET infrastructure.

Although 10-Gigabit Ethernet is currently being implemented only by extremely high-volume users such as enterprise networks, universities, telecommunications carriers, and Internet service providers, it’s probably only a matter of time before it’s delivering video to your desktop. Remember that only a few years ago, a mere 100-Mbps was impressive enough to be called “Fast Ethernet.” collapse

  • Pdf Drawing... 
  • 10-Gigabit Multimode, 50-Micron Fiber Optic Patch Cable, Zipcord, PVC, ST%X96SC PDF Drawing
    PDF Drawing for EFNT010-STSC Series (Version 1)
 

Black Box Explains…OM3 and OM4.

There are different categories of graded-index multimode fiber optic cable. The ISO/IEC 11801 Ed 2.1:2009 standard specifies categories OM1, OM2, and OM3. The TIA/EIA recognizes OM1, OM2, OM3, and OM4.... more/see it nowThe TIA/EIA ratified OM4 in August 2009 (TIA/EIA 492-AAAD). The IEEE ratified OM4 (802.ba) in June 2010.

OM1 specifies 62.5-micron cable and OM2 specifies 50-micron cable. These are commonly used in premises applications supporting Ethernet rates of 10 Mbps to 1 Gbps. They are also typically used with LED transmitters. OM1 and OM2 cable are not suitable though for today's higher-speed networks.

OM3 and OM4 are both laser-optimized multimode fiber (LOMMF) and were developed to accommodate faster networks such as 10, 40, and 100 Gbps. Both are designed for use with 850-nm VCSELS (vertical-cavity surface-emitting lasers) and have aqua sheaths.

OM3 specifies an 850-nm laser-optimized 50-micron cable with a effective modal bandwidth (EMB) of 2000 MHz/km. It can support 10-Gbps link distances up to 300 meters. OM4 specifies a high-bandwidth 850-nm laser-optimized 50-micron cable an effective modal bandwidth of 4700 MHz/km. It can support 10-Gbps link distances of 550 meters. 100-Gbps distances are 100 meters and 150 meters, respectively. Both rival single-mode fiber in performance while being significantly less expensive to implement.

OM1 and 2 are made with a different process than OM3 and 4. Non-laser-optimized fiber cable is made with a small defect in the core, called an index depression. LED light sources are commonly used with these cables.

OM3 and 4 are manufactured without the center defect. As networks migrated to higher speeds, VCSELS became more commonly used rather than LEDs, which have a maximum modulation rate of 622 Mbps. Because of that, LEDs can’t be turned on and off fast enough to support higher-speed applications. VCSELS provided the speed, but unfortunately when used with older OM1 and 2 cables, required mode-conditioning launch cables. Thus manufacturers changed the production process to eliminate the center defect and enable OM3 and OM4 cables to be used directly with the VCSELS. OM3/OM4 Comparison
850 nm High Performance EMB (MHz/km)

OM3: 2000

OM4: 4700


850-nm Ethernet Distance
1-GbE
OM3: 1000 m

OM4: 1000 m


10-GbE
OM3: 300 m

OM4: 550 m


40-GbE
OM3: 100 m

OM4: 150 m


100-GbE
OM3: 100 m

OM4: 150 m

collapse


Black Box Explains...Multimode vs. single-mode Fiber.

Multimode, 50- and 62.5-micron cable.
Multimode cable has a large-diameter core and multiple pathways of light. It comes in two core sizes: 50-micron and 62.5-micron.

Multimode fiber optic cable can be... more/see it nowused for most general data and voice fiber applications, such as bringing fiber to the desktop, adding segments to an existing network, and in smaller applications such as alarm systems. Both 50- and 62.5-micron cable feature the same cladding diameter of 125 microns, but 50-micron fiber cable features a smaller core (the light-carrying portion of the fiber).

Although both can be used in the same way, 50-micron cable is recommended for premise applications (backbone, horizontal, and intrabuilding connections) and should be considered for any new construction and installations. Both also use either LED or laser light sources. The big difference between the two is that 50-micron cable provides longer link lengths and/or higher speeds, particularly in the 850-nm wavelength.

Single-mode, 8–10-micron cable.
Single-mode cable has a small, 8–10-micron glass core and only one pathway of light. With only a single wavelength of light passing through its core, single-mode cable realigns the light toward the center of the core instead of simply bouncing it off the edge of the core as multimode does.

Single-mode cable provides 50 times more distance than multimode cable. Consequently, single-mode cable is typically used in long-haul network connections spread out over extended areas, including cable television and campus backbone applications. Telcos use it for connections between switching offices. Single-mode cable also provides higher bandwidth, so you can use a pair of single-mode fiber strands full-duplex for up to twice the throughput of multimode fiber.

Specification comparison:

50-/125-Micron Multimode Fiber

850-nm Wavelength:
Bandwidth: 500 MHz/km;
Attenuation: 3.5 dB/km;
Distance: 550 m;

1300-nm Wavelength:
Bandwidth: 500 MHz/km;
Attenuation: 1.5 dB/km;
Distance: 550 m

62.5-/125-Miron Multimode Fiber

850-nm Wavelength:
Bandwidth: 160 MHz/km;
Attenuation: 3.5 dB/km;
Distance: 220 m;

1300-nm Wavelength:
Bandwidth: 500 MHz/km;
Attenuation: 1.5 dB/km;
Distance: 500 m

8–10-Micron Single-Mode Fiber

Premise Application:
Wavelength: 1310 nm and 1550 nm;
Attenuation: 1.0 dB/km;

Outside Plant Application:
Wavelength: 1310 nm and 1550 nm;
Attenuation: 0.1 dB/km collapse

  • Pdf Drawing... 
  • 10-Gigabit Multimode, 50-Micron Fiber Optic Patch Cable, Zipcord, PVC, ST%X96ST PDF Drawing
    PDF Drawing for EFNT010-STST Series (Version 1)
 

Black Box Explains...Fiber.


Fiber versus copper.

When planning a new or upgraded cabling infrastructure, you have two basic choices: fiber or copper. Both offer superior data transmission. The decision on which one... more/see it nowto use may be difficult. It will often depend on your current network, your future networking needs, and your particular application, including bandwidth, distances, environment, cost, and more. In some cases, copper may be a better choice; in other situations, fiber offers advantages.


Although copper cable is currently more popular and much more predominant in structured cabling systems and networks, fiber is quickly gaining fans.


Fiber optic cable is becoming one of the fastest-growing transmission mediums for both new cabling installations and upgrades, including backbone, horizontal, and even desktop applications. Fiber optic cable is favored for applications that need high bandwidth, long distances, and complete immunity to electrical interference. It’s ideal for high data-rate systems such as Gigabit Ethernet, FDDI, multimedia, ATM, SONET, Fibre Channel, or any other network that requires the transfer of large, bandwidth-consuming data files, particularly over long distances. A common application for fiber optic cable is as a network backbone, where huge amounts of data are transmitted. To help you decide if fiber is right for your new network or if you want to migrate to fiber, take a look at the following:



The advantages of fiber.

Greater bandwidth-Because fiber provides far greater bandwidth than copper and has proven performance at rates up to 10 Gbps, it gives network designers future-proofing capabilities as network speeds and requirements increase. Also, fiber optic cable can carry more information with greater fidelity than copper wire. That’s why the telephone networks use fiber, and many CATV companies are converting to fiber.


Low attenuation and greater distance-Because the fiber optic signal is made of light, very little signal loss occurs during transmission so data can move at higher speeds and greater distances. Fiber does not have the 100-meter (304.8-ft.) distance limitation of unshielded twisted-pair copper (without a booster). Fiber distances can range from 300 meters to 40 kilometers, depending on the style of cable, wavelength, and network. (Fiber distances are typically measured in metric units.) Because fiber signals need less boosting than copper ones do, the cable performs better.


Fiber networks also enable you to put all your electronics and hardware in one central location, instead of having wiring closets with equipment throughout the building.


Security-Your data is safe with fiber cable. It does not radiate signals and is extremely difficult to tap. If the cable is tapped, it’s very easy to monitor because the cable leaks light, causing the entire system to fail. If an attempt is made to break the security of your fiber system, you’ll know it.


Immunity and reliability-Fiber provides extremely reliable data transmission. It’s completely immune to many environmental factors that affect copper cable. The fiber is made of glass, which is an insulator, so no electric current can flow through. It is immune to electromagnetic interference and radio-frequency interference (EMI/RFI), crosstalk, impedance problems, and more. You can run fiber cable next to industrial equipment without worry. Fiber is also less susceptible to temperature fluctuations than copper is and can be submerged in water.


Design-Fiber is lightweight, thin, and more durable than copper cable. And, contrary to what you might think, fiber optic cable has pulling specifications that are up to ten times greater than copper cable’s. Its small size makes it easier to handle, and it takes up much less space in cabling ducts. Although fiber is still more difficult to terminate than copper is, advancements in connectors are making temination easier. In addition, fiber is actually easier to test than copper cable.


Migration-The proliferation and lower costs of media converters are making copper to fiber migration much easier. The converters provide seamless links and enable the use of existing hardware. Fiber can be incorporated into networks in planned upgrades.


Standards-New TIA/EIA standards are bringing fiber closer to the desktop. TIA/EIA-785, ratified in 2001, provides a cost-effective migration path from 10-Mbps Ethernet to 100-Mbps Fast Ethernet over fiber (100BASE-SX). A recent addendum to the standard eliminates limitations in transceiver designs. In addition, in June 2002, the IEEE approved a 10-Gigabit Ethernet standard.


Costs-The cost for fiber cable, components, and hardware is steadily decreasing. Installation costs for fiber are higher than copper because of the skill needed for terminations. Overall, fiber is more expensive than copper in the short run, but it may actually be less expensive in the long run. Fiber typically costs less to maintain, has much less downtime, and requires less networking hardware. And fiber eliminates the need to recable for higher network performance.


Multimode or single-mode, duplex or simplex?

Multimode-Multimode fiber optic cable can be used for most general fiber applications. Use multimode fiber for bringing fiber to the desktop, for adding segments to your existing network, or in smaller applications such as alarm systems. Multimode cable comes with two different core sizes: 50 micron or 62.5 micron.


Single-mode-Single-mode is used over distances longer than a few miles. Telcos use it for connections between switching offices. Single-mode cable features an 8.5-micron glass core.


Duplex-Use duplex multimode or single-mode fiber optic cable for applications that require simultaneous, bidirectional data transfer. Workstations, fiber switches and servers, fiber modems, and similar hardware require duplex cable. Duplex is available in single- and multimode.


Simplex-Because simplex fiber optic cable consists of only one fiber link, you should use it for applications that only require one-way data transfer. For instance, an interstate trucking scale that sends the weight of the truck to a monitoring station or an oil line monitor that sends data about oil flow to a central location. Simplex fiber comes in single- and multimode types.


50- vs. 62.5-micron cable.

Although 50-micron fiber cable features a smaller core, which is the light-carrying portion of the fiber, both 62.5- and 50-micron cable feature the same glass cladding diameter of 125 microns. You can use both in the same types of networks, although 50-micron cable is recommended for premise applications: backbone, horizontal, and intrabuilding connections, and should be considered especially for any new construction and installations. And both can use either LED or laser light sources.


The big difference between 50-micron and 62.5-micron cable is in bandwidth-50-micron cable features three times the bandwidth of standard 62.5-micron cable, particularly at 850 nm. The 850-nm wavelength is becoming more important as lasers are being used more frequently as a light source.


Other differences are distance and speed. 50-micron cable provides longer link lengths and/or higher speeds in the 850-nm wavelength. See the table below.




The ferrules: ceramic or composite?

As a general rule, use ceramic ferrules for critical network connections such as backbone cables or for connections that will be changed frequently, like those in wiring closets. Ceramic ferrules are more precisely molded and fit closer to the fiber, which gives the fiber optic cables a lower optical loss.


Use composite ferrules for connections that are less critical to the network’s overall operation and less frequently changed. Like their ceramic counterparts, composite ferrules are characterized by low loss, good quality, and a long life. However, they are not as precisely molded and slightly easier to damage, so they aren’t as well-suited for critical connections.


Testing and certifying fiber optic cable.

If you’re accustomed to certifying copper cable, you’ll be pleasantly surprised at how easy it is to certify fiber optic cable because it’s immune to electrical interference. You only need to check a few measurements.

Attenuation (or decibel loss)-Measured in decibels/kilometer (dB/km), this is the decrease of signal strength as it travels through the fiber cable. Generally, attenuation problems are more common on multimode fiber optic cables.

Return loss-This is the amount of light reflected from the far end of the cable back to the source. The lower the number, the better. For example, a reading of -60 decibels is better than -20 decibels. Like attenuation, return loss is usually greater with multimode cable.

Graded refractive index-This measures how the light is sent down the fiber. This is commonly measured at wavelengths of 850 and 1300 nanometers. Compared to other operating frequencies, these two ranges yield the lowest intrinsic power loss. (NOTE: This is valid for multimode fiber only.)

Propagation delay-This is the time it takes a signal to travel from one point to another over a transmission channel.

Optical time-domain reflectometry (OTDR)-This enables you to isolate cable faults by transmitting high-frequency pulses onto a cable and examining their reflections along the cable. With OTDR, you can also determine the length of a fiber optic cable because the OTDR value includes the distance the optic signal travels.


There are many fiber optic testers on the market today. Basic fiber optic testers function by shining a light down one end of the cable. At the other end, there’s a receiver calibrated to the strength of the light source. With this test, you can measure how much light is going to the other end of the cable. Generally, these testers give you the results in dB lost, which you then compare to the loss budget. If the measured loss is less than the number calculated by your loss budget, your installation is good.


Newer fiber optic testers have a broad range of capabilities. They can test both 850- and 1300-nanometer signals at the same time and can even check your cable for compliance with specific standards.


Fiber precautions.

A few properties particular to fiber optic cable can cause problems if you aren’t careful during installation.

Intrinsic power loss-As the optic signal travels through the fiber core, the signal inevitably loses some speed through absorption, reflection, and scattering. This problem is easy to manage by making sure your splices are good and your connections are clean.

Microbending-Microbends are minute deviations in fiber caused by excessive bends, pinches, and kinks. Using cable with reinforcing fibers and other special manufacturing techniques minimizes this problem.

Connector loss-Connector loss occurs when two fiber segments are misaligned. This problem is commonly caused by poor splicing. Scratches and dirt introduced during the splicing process can also cause connector loss.

Coupling loss-Similar to connector loss, coupling loss results in reduced signal power and is from poorly terminated connector couplings.


Remember to be careful and use common sense when installing fiber cable. Use clean components. Keep dirt and dust to a minimum. Don’t pull the cable excessively or bend it too sharply around any corners. That way, your fiber optic installation can serve you well for many years.

collapse


Black Box Explains...Ceramic and composite ferrules.

Cables manufactured with ceramic ferrules are ideal for mission-critical applications or connections that are changed frequently. These cables are high quality and typically have a very long life. Ceramic ferrules... more/see it noware more precisely molded and fit closer to the fiber than their composite counterparts, which gives them a lower optical loss.

On the other hand, cables with composite ferrules are ideal for less critical applications or connections that won’t be changed frequently. Composite ferrule cables are characterized by low loss, good quality, and long life. collapse


Black Box Explains...Fiber connectors.

• The ST® connector, which uses a bayonet locking system, is the most common connector.

• The SC connector features a molded body and a push- pull locking system.

• The FDDI... more/see it nowconnector comes with a 2.5-mm free-floating ferrule and a fixed shroud to minimize light loss.

• The MT-RJ connector, a small-form RJ-style connector, features a molded body and uses cleave-and-leave splicing.

• The LC connector, a small-form factor connector, features a ceramic ferrule and looks like a mini SC connector.

• The VF-45™connector is another small-form factor connector. It uses a unique “V-groove“ design.

• The FC connector is a threaded body connector. Secure it by screwing the connector body to the mating threads. Used in high-vibration environments.

• The MTO/MTP connector is a fiber connector that uses high-fiber-count ribbon cable. It’s used in high-density fiber applications.

• The MU connector resembles the larger SC connector. It uses a simple push-pull latching connection and is well suited for high-density applications.
collapse


Black Box Explains...10-Gigabit Ethernet.

10-Gigabit Ethernet (10-GbE), ratified in June 2002, is a logical extension of previous Ethernet versions. 10-GbE was designed to make the transition from LANs to Wide Area Networks (WANs) and... more/see it nowMetropolitan Area Networks (MANs). It offers a cost-effective migration for high-performance and long-haul transmissions at up to 40 kilometers. Its most common application now is as a backbone for high-speed LANs, server farms, and campuses.

10-GbE supports existing Ethernet technologies. It uses the same layers (MAC, PHY, and PMD), and the same frame sizes and formats. But the IEEE 802.3ae spec defines two sets of physical interfaces: LAN (LAN PHY) and WAN (WAN PHY). The most notable difference between 10-GbE and previous Ethernets is that 10-GbE operates in full-duplex only and specifies fiber optic media.

At a glance—Gigabit vs. 10-Gigabit Ethernet

Gigabit
• CSMA/CD + full-duplex
• Leveraged Fibre Channel PMDs
• Reused 8B/10B coding
• Optical/copper media
• Support LAN to 5 km
• Carrier extension

10-Gigabit Ethernet
• Full-duplex only
• New optical PMDs
• New coding scheme 64B/66B
• Optical (developing copper)
• Support LAN to 40 km
• Throttle MAC speed for WAN
• Use SONET/SDH as Layer 1 transport

The alphabetical coding for 10-GbE is as follows:
S = 850 nm
L = 1310 nm
E = 1550 nm
X = 8B/10B signal encoding
R = 66B encoding
W = WIS interface (for use with SONET).

10-GbE
10GBASE-SR — Distance: 300 m; Wavelength: 850 nm; Cable: Multimode
10GBASE-SW — Distance: 300 m; Wavelength: 850 nm; Cable: Multimode
10GBASE-LR — Distance: 10 km; Wavelength: 1310 nm; Cable: Single-Mode
10GBASE-LW — Distance: 10 km; Wavelength: 1310 nm; Cable: Single-Mode
10GBASE-LX4 — Distance: Multimode 300 m, Single-Mode 10 km; Wavelength: Multimode 1310 nm, Single-Mode WWDM; Cable: Multimode or Single-Mode
10GBASE-ER — Distance: 40 km; Wavelength: 1550 nm; Cable: Single-Mode
10GBASE-EW — Distance: 40 km; Wavelength: 550 nm; Cable: Single-Mode
10GBASE-CX4* — Distance: 15 m; Wavelength: Cable: 4 x Twinax
10GBASE-T* — Distance: 25–100 m; Wavelength: Cable: Twisted Pair
* Proposed for copper. collapse

  • Pdf Drawing... 
  • 10-Gigabit Multimode, 50-Micron FO Patch Cable, Zipcord, PVC, LC%X96SC PDF Drawing
    PDF Drawing for EFNT010-SCLC Series (Version 1)
 
Results 1-10 of 22 1 2 3 > 
Close

Support

Delivering superior technical support is our highest priority. Depending on the products or services we provide for you, please visit your appropriate support area.



 

You have added this item to your cart.

Print
Black Box 1-877-877-2269 Black Box Network Services