Loading


Categories (x) > Cables > Computer & Data Cables (x)

Results 11-18 of 18 < 1 2 
  • Pdf Drawing... 
  • V.35 Interface Cable (34-Conductor, Straight-Pinned, PVC, Male/Female) PDF Drawing
    PDF Drawing of EYNT450-MF series (1)
 

Black Box Explains...Solid vs. stranded cable.

Solid-conductor cable is designed for backbone and horizontal cable runs. Use it for runs between two wiring closets or from the wiring closet to a wallplate. Solid cable shouldn’t be... more/see it nowbent, flexed, or twisted repeatedly. Its attenuation is lower than that of stranded-conductor cable.

Stranded cable is for use in shorter runs between network interface cards (NICs) and wallplates or between concentrators and patch panels, hubs, and other rackmounted equipment. Stranded-conductor cable is much more flexible than solid-core cable. However, attenuation is higher in stranded-conductor cable, so the total length of stranded cable in your system should be kept to a minimum to reduce signal degradation. collapse


Black Box Explains...Serial ATA technology.

Introduced in the mid 1980s, the Advanced Technology Attachment (ATA) interconnect soon became the industry-standard parallel input/output bus interface for connecting internal storage devices. Ultra ATA, which builds on the... more/see it noworiginal parallel ATA interface, has become the most commonly used type of interconnect.

But in recent years, sharing digital video and audio files over high-speed networks and other data-intensive uses has placed greater demands on hard drives, optical drives, and media-storage peripherals. So, not surprisingly, Ultra ATA now faces competition from a new technology—Serial ATA.

As the name implies, this new interconnect uses a serial bus architecture instead of a parallel one. Serial ATA currently supports speeds up to 150 MBps. Further enhancements could to boost rates as high as 600 MBps.

Compared with Ultra ATA, Serial ATA offers distinct advantages, including a point-to-point topology that enables you to dedicate 150 MBps to each connected device. Each channel can work independently and, unlike the “master-slave” shared bus of Ultra ATA, there’s no drive contention or interface bandwidth sharing.

Compared with Ultra ATA’s parallel bus design, Serial ATA requires a single signal path for sending data bits and a second path for receiving acknowledgement data. Each path travels across a 2-wire differential pair, and the bus contains four signal lines per channel. Fewer interface signals means the interconnect cable requires less board space.

Serial ATA also uses thinner cables (no more than 0.25" wide) that are available in longer lengths (up to 1 meter) as well as an improved connector design to reduce crosstalk. It also offers hot-swappable capabilities.

Although Serial ATA can’t interface directly with earlier Ultra ATA devices, it complies fully with the ATA protocol, so software between the two interconnects is compatible. collapse


Black Box Explains...V.35, the Faster Serial Interface.

V.35 is the ITU (formerly CCITT) standard termed “Data Transmission at 48 kbps Using 60–108 KHz Group-Band Circuits.“

Basically, V.35 is a high-speed serial interface designed to support both higher data... more/see it nowrates and connectivity between DTEs (data-terminal equipment) or DCEs (data-communication equipment) over digital lines.

Recognizable by its blocky, 34-pin connector, V.35 combines the bandwidth of several telephone circuits to provide the high-speed interface between a DTE or DCE and a CSU/DSU (Channel Service Unit/Data Service Unit).

Although it’s commonly used to support speeds ranging anywhere from 48 to 64 kbps, much higher rates are possible. For instance, maximum V.35 cable distances can theoretically range up to 4000 feet (1200 m) at speeds up to 100 kbps. Actual distances will depend on your equipment and cable.

To achieve such high speeds and great distances, V.35 combines both balanced and unbalanced voltage signals on the same interface. collapse

  • Pdf Drawing... 
  • V.35 Interface Cable (34-Conductor, Straight-Pinned, PVC, Female/Female) PDF Drawing
    PDF Drawing of EYNT450-FF series (1)
 

Black Box Explains...SCSI Ultra2 and LVD (Low-Voltage Differential).

Small Computer Systems Interface (SCSI), pronounced “scuzzy,” has been the dominant technology used to connect computers and high-speed peripherals since the 1980s. SCSI technology is constantly evolving to accommodate increased... more/see it nowbandwidth needs. One of the more recent developments is Ultra2 SCSI.

Because Ultra2 SCSI is backward compatible, it works with all legacy equipment. Ultra2 doubles the possible bandwidth on the bus from 40 to 80 MBps! Just as importantly, Ultra2 supports distances up to 12 meters (39.3 ft.) for a multiple-device configuration. Ultra2 uses Low-voltage Differential (LVD) techniques to transfer data at faster rates with fewer errors. Don’t confuse Ultra2 with LVD. Ultra2 is a data-transfer method; LVD is the signaling technique used to transfer the data.

Cables are very important when designing or upgrading a system to take advantage of Ultra2 SCSI. Cables and connectors must be of high quality and they should come from a reputable manufacturer to prevent crosstalk and minimize signal radiation. BLACK BOX® Ultra2 LVD cables are constructed of the finest-quality components to provide your system with the maximum protection and highest possible data-transfer rates. collapse



Product Data Sheets (pdf)...Ultra2 LVD SCSI Cables and Terminators

Results 11-18 of 18 < 1 2 
Close

Support

Delivering superior technical support is our highest priority. Depending on the products or services we provide for you, please visit your appropriate support area.



 
Print
Black Box 1-877-877-2269 Black Box Network Services