Loading


Categories (x) > Cables > Audio/Video (x)
Content Type (x) > Black Box Explains (x)

Results 1-10 of 13 1 2 > 

DisplayPort cable.

DisplayPort is a digital video interface that was designed by the Video Electronics Standards Association (VESA) in 2006 and has been produced since 2008. It’s incredibly versatile, with the capability... more/see it nowto deliver digital video, audio, bidirectional communications, and accessory power over a single connector.

DisplayPort cables are targeted at the computer world rather than at consumer electronics. DisplayPort is used to connect digital audio/video computers, displays, monitors, projectors, HDTVs, splitters, extenders, and other devices that support resolutions up to 4K and beyond. Unlike HDMI, however, DisplayPort is an open standard with no royalties.

With the proper adapters, DisplayPort cable can carry DVI and HDMI signals, although this doesn’t work the other way around—DVI and HDMI cable can’t carry DisplayPort. Because DisplayPort can provide power to attached devices, DisplayPort to HDMI or DVI adapters don’t need a separate power supply.

DisplayPort supports cable lengths of up to 15 meters with maximum resolutions at cable lengths up to 3 meters. Bidirectional signaling enables DisplayPort to both send and receive data from an attached device.

DisplayPort v1.1: 10.8 Gbps over a 2-meter cable.

DisplayPort v1.2: 21.6 Gbps (4K). DisplayPort v1.2 also enables you to daisychain up to four monitors with only a single output cable. It also offers the future promise of DisplayPort Hubs that would operate much like a USB hub.

DisplayPort v1.3: 2.4 Gbps. (5K)

The standard DisplayPort connector is very compact and features latches that don’t add to the connector’s size. Unlike HDMI, a DisplayPort connector is easily lockable with a pinch-down locking hood, so it can't be easily dislodged. However, a quick squeeze of the connector releases the latch.

The Mini DisplayPort (MiniDP or mDP) is a miniatured version of the DisplayPort interface. It carries both digital and analog computer video and audio signals. Apple® introduced the Mini DisplayPort connector in 2008 and it is now on all new Mac® computers. It is also being used in newer PC notebooks. This small form factor connector fully supports the VESA DisplayPort protocol. It is particularly useful on systems where space is at a premium, such as laptops, or to support multiple connectors on reduced height add-in cards.

collapse


Black Box Explains...Upgrading from VGA to DVI video.

Many new PCs no longer have traditional Cathode Ray Tube (CRT) computer monitors with a VGA interface. The latest high-end computers have Digital Flat Panels (DFPs) with a Digital Visual... more/see it nowInterface (DVI). Although most computers still have traditional monitors, the newer DFPs are coming on strong because flat-panel displays are not only slimmer and more attractive on the desktop, but they’re also capable of providing a much sharper, clearer image than a traditional CRT monitor.

The VGA interface was developed to support traditional CRT monitors. The DVI interface, on the other hand, is designed specifically for digital displays and supports the high resolution, the sharper image detail, and the brighter and truer colors achieved with DFPs.

Most flat-panel displays can be connected to a VGA interface, even though using this interface results in inferior video quality. VGA simply can’t support the image quality offered by a high-end digital monitor. Sadly, because a VGA connection is possible, many computer users connect their DFPs to VGA and never experience the stunning clarity their flat-panel monitors can provide.

It’s important to remember that for your new DFP display to work at its best, it must be connected to a DVI video interface. You should upgrade the video card in your PC when you buy your new video monitor. Your KVM switches should also support DVI if you plan to use them with DFPs. collapse


Black Box Explains...Component video.

Traditional Composite video standards—NTSC, PAL, or SECAM—combine luminance (brightness), chrominance (color), blanking pulses, sync pulses, and color burst information into a single signal.

Another video standard—S-Video—separates luminance from chrominance to provide... more/see it nowsome improvement in video quality.

But there’s a new kind of video called Component video appearing in many high-end video devices such as TVs and DVD players. Component video is an advanced digital format that separates chrominance, luminance, and synchronization into separate signals. It provides images with higher resolution and better color quality than either traditional Composite video or S-Video. There are two kinds of Component video: Y-Cb-Cr and Y-Pb-Pr. Y-Cb-Cr is often used by high-end DVD players. HDTV decoders typically use the Y-Pb-Pr Component video signal.

Many of today’s high-end video devices such as plasma televisions and DVD players actually have three sets of video connectors: Composite, S-Video, and Component. The easiest way to improve picture quality on your high-end TV is to simply connect it using the Component video connectors rather than the Composite or S-Video connectors. Using the Component video connection enables your TV to make use of the full range of video signals provided by your DVD player or cable box, giving you a sharper image and truer colors.

To use the Component video built into your video devices, all you need is the right cable. A Component video cable has three color-coded BNC connections at each end. For best image quality, choose a high-quality cable with adequate shielding and gold-plated connectors. collapse


Black Box Explains…Digital Visual Interface (DVI) connectors.

The DVI (Digital Video Interface) technology is the standard digital transfer medium for computers while the HDMI interface is more commonly found on HDTVs, and other high-end displays.

The Digital... more/see it nowVisual Interface (DVI) standard is based on transition-minimized differential signaling (TMDS). There are two DVI formats: Single-Link and Dual-Link. Single-link cables use one TMDS-165 MHz transmitter and dual-link cables use two. The dual-link cables double the power of the transmission. A single-link cable can transmit a resolution ?of 1920 x 1200 vs. 2560 x 1600 for a dual-link cable.

There are several types of connectors: ?DVI-D, DVI-I, DVI-A, DFP, and EVC.

  • DVI-D is a digital-only connector for use between a digital video source and monitors. DVI-D eliminates analog conversion and improves the display. It can be used when one or both connections are DVI-D.
  • DVI-I (integrated) supports both digital and analog RGB connections. It can transmit either a digital-to-digital signals or an analog-to-analog signal. It is used by some manufacturers on products instead of separate analog and digital connectors. If both connectors are DVI-I, you can use any DVI cable, but a DVI-I is recommended.
  • DVI-A (analog) is used to carry an DVI signal from a computer to an analog VGA device, such as a display. If one or both of your connections are DVI-A, use this cable. ?If one connection is DVI and the other is ?VGA HD15, you need a cable or adapter ?with both connectors.
  • DFP (Digital Flat Panel) was an early digital-only connector used on some displays.
  • EVC (also known as P&D, for ?Plug & Display), another older connector, handles digital and analog connections.
  • collapse


    Black Box Explains...Digital Visual Interface (DVI) and other digital display interfaces.

    There are three main types of digital video interfaces: P&D, DFP, and DVI. P&D (Plug & Display, also known as EVC), the earliest of these technologies, supports both digital and... more/see it nowanalog RGB connections and is now used primarily on projectors. DFP (Digital Flat-Panel Port) was the first digital-only connector on displays and graphics cards; it’s being phased out.

    There are different types of DVI connectors: DVI-D, DVI-I, DVI-A, DFP, and EVC.

    DVI-D is a digital-only connector. DVI-I supports both digital and analog RGB connections. Some manufacturers are offering the DVI-I connector type on their products instead of separate analog and digital connectors. DVI-A is used to carry an analog DVI signal to a VGA device, such as a display. DFP, like DVI-D, was an early digital-only connector used on some displays; it’s being phased out. EVC (also known as P&D) is similar to DVI-I only it’s slightly larger in size. It also handles digital and analog connections, and it’s used primarily on projectors.

    All these standards are based on transition-minimized differential signaling (TMDS). In a typical single-line digital signal, voltage is raised to a high level and decreased to a low level to create transitions that convey data. TMDS uses a pair of signal wires to minimize the number of transitions needed to transfer data. When one wire goes to a high-voltage state, the other goes to a low-voltage state. This balance increases the data-transfer rate and improves accuracy. collapse


    Black Box Explains... Digital Optic Cable

    Many new, high-quality Mini Disc, pro-audio, DAT (Digital Audio Tape), CD, DVD, and laser disc players, as well as digital amplifiers, DSS satellite receivers, and computer sound cards, are manufactured... more/see it nowwith digital optical output connectors.

    These connectors attach to optical cables, which are constructed with a PVC jacket and a plastic core. The cables transfer information accurately over short distances via digital light signals with low loss and no distortion.

    Digital optical cable with plastic-core construction is less expensive than fiber optic cable with a glass core, but it still provides the benefits of optical transmission over short distances.

    Digital audio makes it possible to use high-quality digital-to-analog converters, which help to maintain the integrity of sound signals from high-end electronic devices.

    The two types of connectors associated with digital optical transmission are TOSLINK®, a Toshiba® trademark, and the 3.5-mm Mini Plug connector. collapse


    Black Box Explains: M1 connectors.

    In 2001, the Video Electronics Standards Association (VESA) approved the M1 Display Interface System for digital displays. The M1 system is a versatile and convenient system designed for computer displays,... more/see it nowspecifically digital projectors. M1 supports both analog and digital signals.

    M1 is basically a modified DVI connector that can support DVI, VGA, USB and IEEE-1394 signals. The single connector replaces multiple connectors on projectors. An M1 cable can also be used to power accessories, such as interface cards for PDAs.

    There are three primary types of M1 connectors:
    –M1-DA (digital and analog). This is the most common connector, and it supports VGA, USB and DVI signals.
    –M1-D (digital) supports DVI signals.
    –M1-A (analog) supports VGA signals.

    The M1 standard does not cover any signal specifications or detailed connector specifications. collapse


    Fiber optic cable construction and types.

    Multimode vs. single-mode
    Multimode cable has a large-diameter core and multiple pathways of light. It is most commonly available in two core sizes: 50-micron and 62.5-micron.

    Multimode fiber optic cable can... more/see it nowbe used for most general data and voice fiber applications such as adding segments to an existing network, and in smaller applications such as alarm systems and bringing fiber to the desktop. Both multimode cable cores use either LED or laser light sources.

    Multimode 50-micron cable is recommended for premise applications?(backbone, horizontal, and intrabuilding connections). It should be considered for any new construction and for installations because it provides longer link lengths and/or higher speeds, particularly in the 850-nm wavelength, than 62.5-micron cable does.

    Multimode cable commonly has an orange or aqua jacket; single-mode has yellow. Other colors are available for various applications and for identification purposes.

    Single-mode cable has a small (8–10-micron) glass core and only one pathway of light. With only a single wavelength of light passing through its core, single-mode cable realigns the light toward the center of the core instead of simply bouncing it off the edge of the core as multimode does.

    Single-mode cable provides 50 times more distance than multimode cable does. Consequently, single-mode cable is typically used in high-bandwidth applications and in long-haul network connections spread out over extended areas, including cable television and campus backbone applications. Telcos use it for connections between switching offices. Single-mode cable also provides higher bandwidth, so you can use a pair of single-mode fiber strands full-duplex at more than twice the throughput of multimode fiber.

    Construction
    Fiber optic cable consists of a core, cladding, coating, buffer strengthening fibers, and cable jacket.

    The core is the physical medium that transports optical data signals from an attached light source to a receiving device. It is a single continuous strand of glass or plastic that’s measured (in microns) by the size of its outer diameter.

    All fiber optic cable is sized according to its core’s outer diameter. The two multimode sizes most commonly available are 50 and 62.5 microns. Single-mode cores are generally less than 9 microns.

    The cladding is a thin layer that surrounds the fiber core and serves as a boundary that contains the light waves and causes the refraction, enabling data to travel throughout the length of the fiber segment.

    The coating is a layer of plastic that surrounds the core and cladding to reinforce the fiber core, help absorb shocks, and provide extra protection against excessive cable bends. These coatings are measured in microns (µ); the coating is 250µ and the buffer is 900µ.

    Strengthening fibers help protect the core against crushing forces and excessive tension during installation. This material is generally Kevlar® yarn strands within the cable jacket.

    The cable jacket is the outer layer of any cable. Most fiber optic cables have an orange jacket, although some types can have black, yellow, aqua or other color jackets. Various colors can be used to designate different applications within a network.

    Simplex vs. duplex patch cables
    Multimode and single-mode patch cables can be simplex or duplex.

    Simplex has one fiber, while duplex zipcord has two fibers joined with a thin web. Simplex (also known as single strand) and duplex zipcord cables are tight-buffered and jacketed, with Kevlar strength members.

    Because simplex fiber optic cable consists of only one fiber link, you should use it for applications that only require one-way data transfer. For instance, an interstate trucking scale that sends the weight of the truck to a monitoring station or an oil line monitor that sends data about oil flow to a central location.

    Use duplex multimode or single-mode fiber optic cable for applications that require simultaneous, bidirectional data transfer. Workstations, fiber switches and servers, Ethernet switches, backbone ports, and similar hardware require duplex cable.

    PVC (riser) vs. plenum-rated
    PVC cable (also called riser-rated cable even though not all PVC cable is riser-rated) features an outer polyvinyl chloride jacket that gives off toxic fumes when it burns. It can be used for horizontal and vertical runs, but only if the building features a contained ventilation system. Plenum can replace PVC, but PVC cannot be used in plenum spaces.

    “Riser-rated” means that the jacket is fire-resistant. However, it can still give off noxious fumes when overheated. The cable carries an OFNR rating and is not for use in plenums.

    Plenum-jacketed cables have FEP, such as Teflon®, which emits less toxic fumes when it burns. A plenum is a space within the building designed for the movement of environmental air. In most office buildings, the space above the ceiling is used for the HVAC air return. If cable goes through that space, it must be “plenum-rated.”

    Distribution-style vs. breakout-style
    Distribution-style cables have several tight-buffered fibers bundled under the same jacket with Kevlar or fiberglass rod reinforcement. These cables are small in size and are typically used within a building for short, dry conduit runs, in either riser or plenum applications. The fibers can be directly terminated, but because the fibers are not individually reinforced, these cables need to be terminated inside a patch panel, junction box, fiber enclosure, or cabinet.

    Breakout-style cables are made of several simplex cables bundled together, making a strong design that is larger than distribution cables. Breakout cables are suitable for riser and plenum applications.

    Loose-tube vs. tight-buffered
    Both loose-tube and tight-buffered cables contain some type of strengthening member, such as aramid yarn, stainless steel wire strands, or even gel-filled sleeves. But each is designed for very different environments.

    Loose-tube cable is specifically designed for harsh outdoor environments. It protects the fiber core, cladding, and coating by enclosing everything within semi-rigid protective sleeves or tubes. Many loose-tube cables also have a water-resistant gel that surrounds the fibers. This gel helps protect them from moisture, so the cables are great for harsh, high-humidity environments where water or condensation can be a problem. The gel-filled tubes can also expand and contract with temperature changes. Gel-filled loose-tube cable is not the best choice for indoor applications.

    Tight-buffered cable, in contrast, is optimized for indoor applications. Because it’s sturdier than loose-tube cable, it’s best suited for moderate-length LAN/WAN connections, or long indoor runs. It’s easier to install as well, because there’s no messy gel to clean up and it doesn’t require a fan-out kit for splicing or termination.

    Indoor/outdoor cable
    Indoor/outdoor cable uses dry-block technology to seal ruptures against moisture seepage and gel-filled buffer tubes to halt moisture migration. Comprised of a ripcord, core binder, a flame-retardant layer, overcoat, aramid yarn, and an outer jacket, it is designed for aerial, duct, tray, and riser applications.

    Interlocking armored cable
    This fiber cable is jacketed in aluminum interlocking armor so it can be run just about anywhere in a building. Ideal for harsh environments, it is rugged and rodent resistant. No conduit is needed, so it’s a labor- and money-saving alternative to using innerducts for fiber cable runs.

    Outside-plant cable is used in direct burials. It delivers optimum performance in extreme conditions and is terminated within 50 feet of a building entrance. It blocks water and is rodent-resistant.

    Interlocking armored cable is lightweight and flexible but also extraordinarily strong. It is ideal for out-of-the-way premise links.

    Laser-optimized 10-Gigabit cable
    Laser-optimized multimode fiber cable assemblies differ from standard multimode cable assemblies because they have graded refractive index profile fiber optic cable in each assembly. This means that the refractive index of the core glass decreases toward the outer cladding, so the paths of light towards the outer edge of the fiber travel quicker than the other paths. This increase in speed equalizes the travel time for both short and long light paths, ensuring accurate information transmission and receipt over much greater distances, up to 300 meters at 10 Gbps.

    Laser-optimized multimode fiber cable is ideal for premise networking applications that include long distances. It is usually aqua colored.

    collapse


    S/PDIF

    S/PDIF (Sony/Philips Digital Interface Format) is a type of digital audio transfer file format developed primarily by Sony and Philips. It enables the transfer of digital audio without converting it... more/see it nowto and from analog, which can degrade the signal.

    S/PDIF is typically used to connect consumer audio equipment over short distances. The connector is found on equipment such as a DAT (Digital Audio Tape) device, home theater amplifiers, etc. S/PDIF is based on the professional AES3 interconnect standard.

    S/PDIF signals are carried over two types of cables. The first is a 75-ohm coaxial cable with orange RCA connectors. The second is a fiber cable with TOSLINK connectors. collapse


    Black Box Explains...Digital Visual Interface (DVI) connectors.

    DVI (Digital Video Interface) is the standard digital interface for transmitting uncompressed high-definition, 1080p video between PCs and monitors and other computer equipment. Because DVI accommodates both analog and digital... more/see it nowinterfaces with a single connector, it is also compatible with the VGA interface. DVI differs from HDMI in that HDMI is more commonly found on HDTVs and consumer electronics.

    The DVI standard is based on transition-minimized differential signaling (TMDS). There are two DVI formats: Single-Link and Dual-Link. Single-link cables use one TMDS-165 MHz transmitter and dual-link cables use two. The dual-link cables double the power of the transmission. A single-link cable can transmit a resolution ?of 1920 x 1200 vs. 2560 x 1600 for a dual-link cable.

    There are several types of connectors: DVI-D, DVI-I, DVI-A, DFP, and EVC.

    DVI-D (digital). This digital-only interface provides a high-quality image and fast transfer rates between a digital video source and monitors. It eliminates analog conversion and improves the display. It can be used when one or both connections are DVI-D.

    DVI-I (integrated). This interface supports both digital and analog RGB connections. It can transmit either a digital-to-digital signal or an analog-to-analog signal. It can be used with adapters to enable connectivity to a VGA or DVI-I display or digital connectivity to a DVI-D display. If both connectors are DVI-I, you can use any DVI cable, but DVI-I is recommended.

    DVI-A (analog) This interface is used to carry a DVI signal from a computer to an analog VGA device, such as a display. If one connection is DVI and the other is VGA HD15, you need a cable or adapter with both connectors.

    DFP (Digital Flat Panel) was an early digital-only connector used on some displays.

    EVC (also known as P&D, for Plug & Display), another older connector, handles digital and analog connections.

    collapse

    Results 1-10 of 13 1 2 > 
    Close

    Support

    Delivering superior technical support is our highest priority. Depending on the products or services we provide for you, please visit your appropriate support area.



     
    Print
    Black Box 1-877-877-2269 Black Box Network Services