Categories (x) > Cabinets & Racks (x)

Results 141-150 of 192 << < 11 12 13 14 15 > >> 
  • Video...ClimateCab Cabinets: Save by cooling the cabinet and not the entire room.

    ClimateCab air-conditioned enclosures from Black Box are the answer when you need to house servers, switches, or other IT equipment outside a climate controlled environment. ClimateCab cabinets are like self-contained... more/see it nowdata centers. They&#39;re NEMA 12 rated and come in sizes from 12U to 42U with different size air conditioners. They&#39;re the economical solution for remote or industrial environments, such as warehouses, retail locations, manufacturing floors, outbuildings, and other locations where it would be too costly or impractical to install dedicated cooling or a closet. (V094) collapse

  • Manual... 
  • Fixed Vented Server Shelf User Manual
    User Manual for the RM399-R2, RM403-R2, RM410-R2, and RM589-R2 (Version 2)

Black Box Explains...What to consider when choosing a rack.

Why racks?
There are several things you should consider when choosing a rack.

What kind of equipment will you be putting in it? If you need frequent access to all sides of... more/see it nowthe equipment, an open rack is more convenient than a cabinet. If your equipment needs ventilation, a rack poses no air circulation limitations. And don’t neglect aesthetics. Will customers or clients see your installation? A rack with cable management looks much neater.

Finally, consider security. Because a rack is open, you need to take steps to secure your equipment. Set up your rack in a locked room so prying fingers can’t access your network equipment.

Racks come in various sizes and installation styles. Some are freestanding; some are designed to be wallmounted. Some can be a combination of both styles, sitting on the floor but attaching to the wall for more stability.

Understanding rack measurements.
The main component of a rack is a set of vertical rails with mounting holes to which you attach your equipment or shelves.

The first measurement you need to know is the width between the two rails. It’s commonly given in inches, measured from one mounting hole to the corresponding hole on the opposing rail. The most common rail width is 19"; 23" rails and racks are also available. Most rackmount equipment is designed to fit 19" rails but can be adapted for wider racks.

The next important specification is the number of rack units, which is abbreviated as “U.” This is a measurement of the vertical space available on the rails. Cabinets and racks and rackmount equipment are all measured in rack units. One rack unit (1U) is equal to 1.75" of usable vertical space. So, for example, a device that’s 2U high takes up 3.5" of rack space. A rack that’s 20U high has 35" of usable space.

Because the widths are standard, the amount of vertical space is what determines how much equipment you can actually install. Remember this measurement of usable vertical space is smaller than the external height of the rack.

Getting power to your equipment.
Unless you want to have a tangle of extension cords, you’ll need to get one or more power strips for your rack. Consider which kind would be best for your installation. Rackmount power strips come in versions that mount either vertically or horizontally. Some have outlets that are spaced widely to accommodate transformer blocks—a useful feature if most of your equipment uses bulky power transformers.

Surge protection is another important issue. Some power strips have built-in surge protection; some don’t. With the money you have invested in rackmount equipment, you’ll certainly want to make sure it’s protected.

Any mission-critical equipment should also be connected to an uninterruptible power supply (UPS). A UPS prevents your equipment from crashing during a brief blackout or brownout and allows enough time to shut everything down properly in the event of an extended power outage. Choose a rackmount UPS for the most critical equipment or plug the whole rack into a standalone UPS.

Managing cables.
Your equipment may look very tidy when it’s all mounted. But unless you’re very careful with your cables, you can create a tangle you’ll never be able to unravel.

Plotting your connections in advance helps you to decide the most efficient way to organize the cables. Knowing where the connections are tells you whether it’s better to run cables horizontally or vertically. Most network problems are in the cabling, so if you let your cables get away from you now, you’re sure to pay for it down the road.

There are many cable management accessories that can simplify your racks. collapse

  • Manual... 
  • AlertWerks II Dry-Contact Sensor Manual
    Manual for the EME1K1-015, EME1K1-060, and EME1K1-100 (Version 1)
  • Manual... 
  • 4-Post Rack User Manual
    User Manual for the RM7000A-R2, RM7001A-R2, RM7002, RM7003A-R2, RM7004A-R2, RM7005A-R2, RM7006, RM7007, RM7008A-R2, and RM7010 (Version 3)

Product Data Sheets (pdf)...Horizontal and Vertical Organizers

Black Box Explains...Power over Ethernet (PoE).

What is PoE?
The seemingly universal network connection, twisted-pair Ethernet cable, has another role to play, providing electrical power to low-wattage electrical devices. Power over Ethernet (PoE) was ratified by the... more/see it nowInstitute of Electrical and Electronic Engineers (IEEE) in June 2000 as the 802.3af-2003 standard. It defines the specifications for low-level power delivery—roughly 13 watts at 48 VDC—over twisted-pair Ethernet cable to PoE-enabled devices such as IP telephones, wireless access points, Web cameras, and audio speakers.

Recently, the basic 802.3af standard was joined by the IEEE 802.3at PoE standard (also called PoE+ or PoE plus), ratified on September 11, 2009, which supplies up to 25 watts to larger, more power-hungry devices. 802.3at is backwards compatible with 802.3af.

How does PoE work?
The way it works is simple. Ethernet cable that meets CAT5 (or better) standards consists of four twisted pairs of cable, and PoE sends power over these pairs to PoE-enabled devices. In one method, two wire pairs are used to transmit data, and the remaining two pairs are used for power. In the other method, power and data are sent over the same pair.

When the same pair is used for both power and data, the power and data transmissions don’t interfere with each other. Because electricity and data function at opposite ends of the frequency spectrum, they can travel over the same cable. Electricity has a low frequency of 60 Hz or less, and data transmissions have frequencies that can range from 10 million to 100 million Hz.

Basic structure.
There are two types of devices involved in PoE configurations: Power Sourcing Equipment (PSE) and Powered Devices (PD).

PSEs, which include end-span and mid-span devices, provide power to PDs over the Ethernet cable. An end-span device is often a PoE-enabled network switch that’s designed to supply power directly to the cable from each port. The setup would look something like this:

End-span device → Ethernet with power

A mid-span device is inserted between a non-PoE device and the network, and it supplies power from that juncture. Here is a rough schematic of that setup:

Non-PoE switch → Ethernet without PoE → Mid-span device → Ethernet with power

Power injectors, a third type of PSE, supply power to a specific point on the network while the other network segments remain without power.

PDs are pieces of equipment like surveillance cameras, sensors, wireless access points, and any other devices that operate on PoE.

PoE applications and benefits.

  • Use one set of twisted-pair wires for both data and low-wattage appliances.
  • In addition to the applications noted above, PoE also works well for video surveillance, building management, retail video kiosks, smart signs, vending machines, and retail point-of-information systems.
  • Save money by eliminating the need to run electrical wiring.
  • Easily move an appliance with minimal disruption.
  • If your LAN is protected from power failure by a UPS, the PoE devices connected to your LAN are also protected from power failure.

  • PoE Standards PoE
    IEEE 802.3 af
    PoE IEEE 802.3 at
    Power available at powered device 12.95 W 25.5
    Maximum power delivered 15.40 W 34.20
    Voltage range at powred source 44.0-57.0 V 50.0-57.0 V
    Voltage range at powred device 37.0-57.0 42.5-57.0 V
    Maximum current 350 mA 600 mA
    Maximum cable resistance 20 ohms 12.5 ohms

    • Manual... 
    • Elite Server-Mount Cabinet Heavy-Duty Solid Shelf User Manual
      User Manual for the RM590-R2 and RM591-R2 (Version 2)
    • Video...New Cabling Solutions

      From DisplayPort cables and RG-6 quad-shield coax to handy retractable cables, this webinar covers all the latest new cabling products.

    Product Data Sheets (pdf)...Select Plus Cabinets

    Results 141-150 of 192 << < 11 12 13 14 15 > >> 


    Delivering superior technical support is our highest priority. Depending on the products or services we provide for you, please visit your appropriate support area.


    You have added this item to your cart.

    Important message about your cart:

    You requested more of "" than the currently available. The quantity has been changed to them maximum quantity available. View your cart.

    Black Box 1-800-316-7107 Black Box Network Services