Categories (x) > Cabinets & Racks (x)
Content Type (x) > Black Box Explains (x)

Results 11-20 of 24 < 1 2 3 > 

Black Box Explains…Liquid cooling.

The trend toward high-density installations with higher-powered CPUs has made heat a critical issue in data centers. Blade servers present a special challenge—a rack of blade servers can dissipate more... more/see it nowthan 25 kW, generating more heat than an electric oven.

Heat-generated problems
The heat generated in today’s high-density data centers can shorten equipment lifespan, negatively affect equipment performance, and cause downtime. Traditional air-cooling methods such as hot/cold aisle arrangements simply can’t keep up with these heat-generating installations. Data center managers often try to compensate for the inefficiency of air cooling by under-populating racks, but this wastes space—an often scarce commodity in modern data centers.

Why liquid
Because of the inherent inefficiencies of air cooling, many data centers have turned to liquid cooling through water or other refrigerants. Liquids have far greater heat transfer properties than air—water is 3400 times more efficient than air—and can cool far greater equipment densities.

Liquid cooling is usually done at the rack level using the airflow from the servers to move the heat to a cooling unit where it’s removed by liquid, neutralizing heat at the source before it enters the room. Liquid cooling may also be done at the component level, where cooling liquid is delivered directly to individual components. Liquid cooling may also arrive in the form of portable units for cooling hot spots.

Liquid cooling options
Types of liquid cooling commonly used in data centers include:

  • Cabinet-door liquid cooling: With this method, cooling units are special cabinet doors that contain sealed tubes filled with chilled liquid. The liquid is circulated through the door to remove heat vented by equipment fans. Because liquid-cooled doors can replace standard cabinet doors, they’re the favored method for retrofitting liquid cooling into existing data centers.
  • Integrated liquid cooling: This consists of a specialized sealed cabinet that has channels for liquid cooling built into it to act as heat exchangers. Fans move hot air past the heat exchangers before sending the cooled air back to the servers. These cabinets are closed systems that release very little heat into the room.
  • Component-based liquid cooling: Some servers are preconfigured with integrated liquid-based cooling modules. After the servers are installed, liquid is circulated through the cooling modules.
  • Immersion cooling: This rather counterintuitive cooling method immerses servers in a non-conductive liquid, which is circulated to cool the servers.
  • Portable liquid cooling: These are small units that operate by blowing air across water-cooled coils. They can usually accept water from any source—including a nearby faucet. They’re generally plumbed with ordinary garden hoses and require no special skills to use. Portable cooling units are intended for emergency cooling rather than as a permanent solution.

Liquid cooling requires a shift in the way you think about cooling. Installation may require that you acquire a new skill set or hire a professional installer. However, the space savings and cost savings gained through liquid cooling more than make up for the inconvenience of installing a new cooling technology.

Not only does liquid cooling enable data centers to operate at far greater densities than conventional air cooling does, it gets rid of the infrastructure associated with air cooling, enabling you to eliminate hot/cold aisles and raised floors. Liquid cooling can support from 25 to 80% more equipment in the same footprint, resulting in significantly lower infrastructure costs.

Add to this the fact that cooling is often the majority of a data center’s operating cost, and it’s plain to see why an investment in the efficiency of liquid cooling goes right to the bottom line. collapse

Black Box Explains...The fully accessorized rack.

After you choose your rack, consider how you’ll set it up and what accessories you might need.

Your rack may need to be secured. A typical rack has about a... more/see it now15"-deep base, providing some stability, but not enough to prevent the rack from tipping if heavy objects are mounted on it. To solve this problem, most rack bases can be bolted to the floor.

You also need to decide how to accommodate standalone equipment, which is not actually rackmounted or bolted to the rack. You can place small devices on a cantilevered shelf such as the RM001, however, you should place heavier items such as monitors on a center-weight shelf such as the RM377.

Small extras, such as Patch Panel Hinge Kits, can make your job easier. These hinges enable you to access the back of a patch panel simply by swinging it out from the rack. They’re particularly useful for racks in hard-to-reach areas.

If you need to mount both 19" and 23" equipment in the same rack, use a 23" rack with 23"-to-19" Rackmount Adapters to fit the 19" devices.

For a neater appearance, you can cover unused spaces in a rack with Filler Panels.

Cable management is also an important consideration. Our Horizontal and Vertical Cable Managers help you to route cables along the sides of racks, between racks, and to the rackmounted equipment. collapse

Black Box Explains…Cooling blade servers.

Blade servers are hot. Really hot. These slim, high-powered CPUs generate heat like nothing you’ve ever installed in your data center before—a rack of blade servers can generate more heat... more/see it nowthan an electric oven! And as temperatures rise, servers may fail, leading to downtime and even data loss.

Needless to say, blade servers present a cooling challenge. If you plan to install them, you need to make sure you can accommodate their cooling needs.

Computer rooms have special equipment such as raised-floor cooling systems to meet their high cooling requirements, but it’s also important to ensure that cabinets used to house blade servers provide adequate ventilation—even in a cool room, hot spots can develop inside cabinets if air distribution is inadequate.

If you’re planning to install blade servers or other high-density components in cabinets, look for a cabinet with fully perforated doors in the front and rear— the greater the amount of perforation, the more cool air can be delivered to the components.

Don’t overload the cabinet by trying to fit in too many servers—75% to 80% of capacity is about right. Leave at least 1U of space between rows of servers for front-to-back ventilation. And finally, ensure all unused rack space is closed off with blank panels to prevent recirculation of warm air back to the front of the cabinet.

If you need help calculating your system’s cooling needs, contact our FREE Tech Support.

Black Box Explains...Remote access.

Remote access is the ability to access a network, a personal computer, a server, or other device from a distance for the purpose of controlling it or to access data.... more/see it nowToday, remote access is usually accomplished over the Internet, although a local IP network, telephone lines, cellular service, or leased lines may also be used. With today’s ubiquitous Internet availability, remote access is increasingly popular and often results in significant cost savings by enabling greater network access and reducing travel to remote sites. Remote access is a very general term that covers a wide range of applications from telecommuting to resetting a distant server. Here are just a few of the applications that fall under the remote access umbrella:

Remote network access
A common use for remote access is to provide corporate network access to employees who work at home or are in sales or other traveling positions. This kind of remote access typically uses IPsec VPN tunnels to authenticate and secure connections.

Remote desktop access
Remote desktop access enables users to access a computer remotely from another computer and take control of it as if it were local. This kind of remote control requires that special software—which is included with most operating systems—be installed and enabled. It’s often used by those who travel frequently to access their “home” computer, and by network administrators for remote server access. This remote access method has some inherent security concerns and is usually incompatible with firewalls, so it’s important to be aware of its limitations and use adequate security precautions.

Remote KVM access
A common application in organizations that maintain servers across multiple sites is server administration through an IP-enabled KVM switch. These IP-addressable switches support one or more servers and have an integral Web server, enabling users to access them over the Internet through a Web browser. Because they’re intended for Internet use, these switches offer authentication and encryption for secure connections.

Remote power management
Anyone who’s ever had to get out of bed in the middle of the night to go switch a server off and back on again to reset it can appreciate the convenience of remote power management. Remote power managers have a wide range of capabilities ranging from simple power switching to reboot a device to sophisticated power monitoring, reporting, and management functions.

Remote environmental security monitoring
Remote environmental and security monitoring over the Internet is increasingly popular, largely because of the cost savings of using existing network infrastructure rather than a proprietary security system. This application requires IP-addressable hubs that support a variety of sensors ranging from temperature and humidity to power monitors. Some models even support surveillance cameras. collapse

Black Box Explains...NEMA 12 certification.

The National Electrical Manufacturers’ Association (NEMA) specifies guidelines for cabinet certifications. NEMA 12 cabinets are constructed for indoor use to provide protection against certain contaminants that might come in contact... more/see it nowwith the enclosed equipment. The NEMA 12 designation means a particular cabinet has met the guidelines, which include protection against falling dirt, circulating dust, lint, fibers, and dripping or splashing non-corrosive liquids. Protection against oil and coolant seepage is also a prerequisite for NEMA 12 certification.

Organizations with mission-critical equipment benefit from a NEMA 12 cabinet. Certain environments put equipment at a higher risk than others. For example, equipment in industrial plants is subject to varying degrees of extreme temperature. Even office buildings generate lots of dust and moisture, which is detrimental to equipment. NEMA 12 enclosures help to ensure that your operation suffers from as little downtime as possible. collapse

Black Box Explains...Rack units.

A Rack Unit is abbreviated as U. One Rack Unit (1U) is equal to 1.75" (4.44 cm).

Black Box Explains...Dry Contacts

A dry contact, also called a volt-free contact, is a relay contact that does not supply voltage. The relay energizes or de-energizes when a change to its input has occurred.... more/see it nowIn other words, a dry contact simply detects whether or not an input switch is open or closed.

The dry contacts in the ServSensor Contact provide a simple two-wire interface that can be easily adapted to third-party sensors and devices. Because you define what the open or closed condition means, dry contacts are infinitely adaptable.

Use dry contacts to monitor alarms such as fire alarms, burglar alarms, and alarms on power systems such as UPSs. A very common use for dry contacts is to detect whether a cabinet door is open or closed. collapse

Black Box Explains...Thermocouples

A thermocouple is a device that measures temperature by using the fact that a junction between two different metals produces a varying voltage related to their temperature. Two common types... more/see it nowof thermocouple are Type J and Type K.

Type J thermocouples use iron paired with a nickel-copper alloy. Type J thermocouples may cover a temperature range of up to -40 to +1382° F (-40 to +750°C), and offer high sensitivity.

Type K, the most common type of thermocouple, uses nickel-chromium and nickel-aluminum alloys. Because Type K is an early specification, its characteristics vary widely; individual thermocouples may cover a range of up to -328 to +2462 °F (-200 to +1350 °C). collapse

Black Box Explains...Fiber connectors.

• The ST® connector, which uses a bayonet locking system, is the most common connector.

• The SC connector features a molded body and a push- pull locking system.

• The FDDI... more/see it nowconnector comes with a 2.5-mm free-floating ferrule and a fixed shroud to minimize light loss.

• The MT-RJ connector, a small-form RJ-style connector, features a molded body and uses cleave-and-leave splicing.

• The LC connector, a small-form factor connector, features a ceramic ferrule and looks like a mini SC connector.

• The VF-45™connector is another small-form factor connector. It uses a unique “V-groove“ design.

• The FC connector is a threaded body connector. Secure it by screwing the connector body to the mating threads. Used in high-vibration environments.

• The MTO/MTP connector is a fiber connector that uses high-fiber-count ribbon cable. It’s used in high-density fiber applications.

• The MU connector resembles the larger SC connector. It uses a simple push-pull latching connection and is well suited for high-density applications.

Black Box Explains...Power over Ethernet (PoE).

What is PoE?
The seemingly universal network connection, twisted-pair Ethernet cable, has another role to play, providing electrical power to low-wattage electrical devices. Power over Ethernet (PoE) was ratified by the... more/see it nowInstitute of Electrical and Electronic Engineers (IEEE) in June 2000 as the 802.3af-2003 standard. It defines the specifications for low-level power delivery—roughly 13 watts at 48 VDC—over twisted-pair Ethernet cable to PoE-enabled devices such as IP telephones, wireless access points, Web cameras, and audio speakers.

Recently, the basic 802.3af standard was joined by the IEEE 802.3at PoE standard (also called PoE+ or PoE plus), ratified on September 11, 2009, which supplies up to 25 watts to larger, more power-hungry devices. 802.3at is backwards compatible with 802.3af.

How does PoE work?
The way it works is simple. Ethernet cable that meets CAT5 (or better) standards consists of four twisted pairs of cable, and PoE sends power over these pairs to PoE-enabled devices. In one method, two wire pairs are used to transmit data, and the remaining two pairs are used for power. In the other method, power and data are sent over the same pair.

When the same pair is used for both power and data, the power and data transmissions don’t interfere with each other. Because electricity and data function at opposite ends of the frequency spectrum, they can travel over the same cable. Electricity has a low frequency of 60 Hz or less, and data transmissions have frequencies that can range from 10 million to 100 million Hz.

Basic structure.
There are two types of devices involved in PoE configurations: Power Sourcing Equipment (PSE) and Powered Devices (PD).

PSEs, which include end-span and mid-span devices, provide power to PDs over the Ethernet cable. An end-span device is often a PoE-enabled network switch that’s designed to supply power directly to the cable from each port. The setup would look something like this:

End-span device → Ethernet with power

A mid-span device is inserted between a non-PoE device and the network, and it supplies power from that juncture. Here is a rough schematic of that setup:

Non-PoE switch → Ethernet without PoE → Mid-span device → Ethernet with power

Power injectors, a third type of PSE, supply power to a specific point on the network while the other network segments remain without power.

PDs are pieces of equipment like surveillance cameras, sensors, wireless access points, and any other devices that operate on PoE.

PoE applications and benefits.
• Use one set of twisted-pair wires for both data and low-wattage appliances.
• In addition to the applications noted above, PoE also works well for video surveillance, building management, retail video kiosks, smart signs, vending machines, and retail point-of-information systems.
• Save money by eliminating the need to run electrical wiring.
• Easily move an appliance with minimal disruption.
• If your LAN is protected from power failure by a UPS, the PoE devices connected to your LAN are also protected from power failure.

Results 11-20 of 24 < 1 2 3 > 


Delivering superior technical support is our highest priority. Depending on the products or services we provide for you, please visit your appropriate support area.

Black Box 1-877-877-2269 Black Box Network Services