Results 1-10 of 2470 1 2 3 4 5 > >> 

Black Box Explains...10-Gigabit Ethernet.

10-Gigabit Ethernet, sometimes called 10-GbE or 10 GigE, is the latest improvement on the Ethernet standard, ratified in 2003 for fiber as the 802.3ae standard, in 2004 for twinax cable... more/see it now as the 802.3ak standard, and in 2006 for UTP as the 802.3an standard.

10-Gigabit Ethernet offers ten times the speed of Gigabit Ethernet. This extraordinary throughput plus compatibility with existing Ethernet standards has resulted in 10-Gigabit Ethernet quickly becoming the new standard for high-speed network backbones, largely supplanting older technologies such as ATM over SONET. 10-Gigabit Ethernet has even made inroads in the area of storage area networks (SAN) where Fibre Channel has long been the dominant standard. This new Ethernet standard offers a fast, simple, relatively inexpensive way to incorporate super high-speed links into your network.

Because 10-Gigabit Ethernet is simply an extension of the existing Ethernet standards family, it’s a true Ethernet standard—it’s totally backwards compatible and retains full compatibility with 10-/100-/1000-Mbps Ethernet. It has no impact on existing Ethernet nodes, enabling you to seamlessly upgrade your network with straightforward upgrade paths and scalability.

10-Gigabit Ethernet is less costly to install than older high-speed standards such as ATM. And not only is it relatively inexpensive to install, but the cost of network maintenance and management also stays low—10-Gigabit Ethernet can easily be managed by local network administrators.

10-Gigabit Ethernet is also more efficient than other high-speed standards. Because it uses the same Ethernet frames as earlier Ethernet standards, it can be integrated into your network using switches rather than routers. Packets don’t need to be fragmented, reassembled, or translated for data to get through.

Unlike earlier Ethernet standards, which operate in half- or full-duplex, 10-Gigabit Ethernet operates in full-duplex only, eliminating collisions and abandoning the CSMA/CD protocol used to negotiate half-duplex links. It maintains MAC frame compatibility with earlier Ethernet standards with 64- to 1518-byte frame lengths. The 10-Gigabit standard does not support jumbo frames, although there are proprietary methods for accommodating them.

Fiber 10-Gigabit Ethernet standards
There are two groups of physical-layer (PHY) 10-Gigabit Ethernet standards for fiber: LAN-PHY and WAN-PHY.

LAN-PHY is the most common group of standards. It’s used for simple switch and router connections over privately owned fiber and uses a line rate of 10.3125 Gbps with 64B/66B encoding.

The other group of 10-Gigabit Ethernet standards, WAN-PHY, is used with SONET/SDH interfaces for wide area networking across cities, states—even internationally.

10GBASE-SR (Short-Range) is a serial short-range fiber standard that operates over two multimode fibers. It has a range of 26 to 82 meters (85 to 269 ft.) over legacy 62.5-µm 850-nm fiber and up to 300 meters (984 ft.) over 50-µm 850-nm fiber.

10GBASE-LR (Long-Range) is a serial long-range 10-Gbps Ethernet standard that operates at ranges of up to 25 kilometers (15.5 mi.) on two 1310-nm single-mode fibers.

10GBASE-ER (Extended-Range) is similar to 10GBASE-LR but supports distances up to 40 kilometers (24.9 mi.) over two 1550-nm single-mode fibers.

10GBASE-LX4 uses Coarse-Wavelength Division Multiplexing (CWDM) to achieve ranges of 300 meters (984 ft.) over two legacy 850-nm multimode fibers or up to 10 kilometers (6.2 mi.) over two 1310-nm single-mode fibers. This standard multiplexes four data streams over four different wavelengths in the range of 1300 nm. Each wavelength carries 3.125 Gbps to achieve 10-Gigabit speed.

In fiber-based Gigabit Ethernet, the 10GBASE-SR, 10GBASE-LR, and 10GBASE-ER LAN-PHY standards have WAN-PHY equivalents called 10GBASE-SW, 10GBASE-LW, and 10GBASE-EW. There is no WAN-PHY standard corresponding to 10GBASE-LX4.

WAN-PHY standards are designed to operate across high-speed systems such as SONET and SDH. These systems are often telco operated and can be used to provide high-speed data delivery worldwide. WAN-PHY 10-Gigabit Ethernet operates within SDH and SONET using an SDH/SONET frame running at 9.953 Gbps without the need to directly map Ethernet frames into SDH/SONET.

WAN-PHY is transparent to data—from the user’s perspective it looks exactly the same as LAN-PHY.

10-Gigabit Ethernet over Copper
10GBASE-CX4 is a standard that enables Ethernet to run over CX4 cable, which consists of four twinaxial copper pairs bundled into a single cable. CX4 cable is also used in high-speed InfiniBand® and Fibre Channel storage applications. Although CX4 cable is somewhat less expensive to install than fiber optic cable, it’s limited to distances of up to 15 meters. Because this standard uses such a specialized cable at short distances, 10GBASE-CX4 is generally used only in limited data center applications such as connecting servers or switches.

10GBASE-Kx is backplane 10-Gigabit Ethernet and consists of two standards. 10GBASE-KR is a serial standard compatible with 10GBASE-SR, 10GBASE-LR, and 10GBASE-ER. 10GBASE-KX4 is compatible with 10GBASE-LX4. These standards use up to 40 inches of copper printed circuit board with two connectors in place of cable. These very specialized standards are used primarily for switches, routers, and blade servers in data center applications.

10GBASE-T is the 10-Gigabit standard that uses the familiar shielded or unshielded copper UTP cable. It operates at distances of up to 55 meters (180 ft.) over existing Category 6 cabling or up to 100 meters (328 ft.) over augmented Category 6, or “6a,” cable, which is specially designed to reduce crosstalk between UTP cables. Category 6a cable is somewhat bulkier than Category 6 cable but retains the familiar RJ-45 connectors.

To send data at these extremely high speeds across four-pair UTP cable, 10GBASE-T uses sophisticated digital signal processing to suppress crosstalk between pairs and to remove signal reflections.

10-Gigabit Ethernet Applications
> 10-Gigabit Ethernet is already being deployed in applications requiring extremely high bandwidth:
> As a lower-cost alternative to Fibre Channel in storage area networking (SAN) applications.
> High-speed server interconnects in server clusters.
> Aggregation of Gigabit segments into 10-Gigabit Ethernet trunk lines.
> High-speed switch-to-switch links in data centers.
> Extremely long-distance Ethernet links over public SONET infrastructure.

Although 10-Gigabit Ethernet is currently being implemented only by extremely high-volume users such as enterprise networks, universities, telecommunications carriers, and Internet service providers, it’s probably only a matter of time before it’s delivering video to your desktop. Remember that only a few years ago, a mere 100-Mbps was impressive enough to be called “Fast Ethernet.” collapse

Black Box Explains…OM3 and OM4.

There are different categories of graded-index multimode fiber optic cable. The ISO/IEC 11801 Ed 2.1:2009 standard specifies categories OM1, OM2, and OM3. The TIA/EIA recognizes OM1, OM2, OM3, and OM4.... more/see it nowThe TIA/EIA ratified OM4 in August 2009 (TIA/EIA 492-AAAD). The IEEE ratified OM4 (802.ba) in June 2010.

OM1 specifies 62.5-micron cable and OM2 specifies 50-micron cable. These are commonly used in premises applications supporting Ethernet rates of 10 Mbps to 1 Gbps. They are also typically used with LED transmitters. OM1 and OM2 cable are not suitable though for today's higher-speed networks.

OM3 and OM4 are both laser-optimized multimode fiber (LOMMF) and were developed to accommodate faster networks such as 10, 40, and 100 Gbps. Both are designed for use with 850-nm VCSELS (vertical-cavity surface-emitting lasers) and have aqua sheaths.

OM3 specifies an 850-nm laser-optimized 50-micron cable with a effective modal bandwidth (EMB) of 2000 MHz/km. It can support 10-Gbps link distances up to 300 meters. OM4 specifies a high-bandwidth 850-nm laser-optimized 50-micron cable an effective modal bandwidth of 4700 MHz/km. It can support 10-Gbps link distances of 550 meters. 100-Gbps distances are 100 meters and 150 meters, respectively. Both rival single-mode fiber in performance while being significantly less expensive to implement.

OM1 and 2 are made with a different process than OM3 and 4. Non-laser-optimized fiber cable is made with a small defect in the core, called an index depression. LED light sources are commonly used with these cables.

OM3 and 4 are manufactured without the center defect. As networks migrated to higher speeds, VCSELS became more commonly used rather than LEDs, which have a maximum modulation rate of 622 Mbps. Because of that, LEDs can’t be turned on and off fast enough to support higher-speed applications. VCSELS provided the speed, but unfortunately when used with older OM1 and 2 cables, required mode-conditioning launch cables. Thus manufacturers changed the production process to eliminate the center defect and enable OM3 and OM4 cables to be used directly with the VCSELS. OM3/OM4 Comparison
850 nm High Performance EMB (MHz/km)

OM3: 2000

OM4: 4700

850-nm Ethernet Distance
OM3: 1000 m

OM4: 1000 m

OM3: 300 m

OM4: 550 m

OM3: 100 m

OM4: 150 m

OM3: 100 m

OM4: 150 m


Black Box Explains...Layer 3 switching.

In the last decade, network topologies have typically featured routers along with hubs or switches. The hub or switch acts as a central wiring point for LAN segments while the... more/see it nowrouter takes care of higher-level functions such as protocol translation, traffic between LAN segments, and wide-area access.

Layer 3 switching, which combines Layer 2 switching and Layer 3 IP routing, provides a more cost-effective way of setting up LANs by incorporating switching and routing into one device. While a traditional Layer 2 switch simply sends data along without examining it, a Layer 3 switch incorporates some features of a router in that it examines data packets before sending them on their way. The integration of switching and routing in a Layer 3 switch takes advantage of the speed of a switch and the intelligence of a router in one economical package.

There are two basic types of Layer 3 switching: packet-by-packet Layer 3 (PPL3) and cut-through Layer 3.

PPL3 switches are technically routers in that they examine all packets before forwarding them to their destinations. They achieve top speed by running protocols such as OSPF (Open Shortest Path First) and by using cache routing tables. Because these switches understand and take advantage of network topology, they can blow the doors off traditional routers with speeds of more than 7,000,000 (that’s seven million!) packets per second.

Cut-through Layer 3 switching relies on a shortcut for top speed. Cut-through Layer 3 switches, rather than examining every packet, examine only the first in a series to determine its destination. Once the destination is known, the data flow is switched at Layer 2 to achieve high speeds. collapse

Black Box Explains…Liquid cooling.

The trend toward high-density installations with higher-powered CPUs has made heat a critical issue in data centers. Blade servers present a special challenge—a rack of blade servers can dissipate more... more/see it nowthan 25 kW, generating more heat than an electric oven.

Heat-generated problems
The heat generated in today’s high-density data centers can shorten equipment lifespan, negatively affect equipment performance, and cause downtime. Traditional air-cooling methods such as hot/cold aisle arrangements simply can’t keep up with these heat-generating installations. Data center managers often try to compensate for the inefficiency of air cooling by under-populating racks, but this wastes space—an often scarce commodity in modern data centers.

Why liquid
Because of the inherent inefficiencies of air cooling, many data centers have turned to liquid cooling through water or other refrigerants. Liquids have far greater heat transfer properties than air—water is 3400 times more efficient than air—and can cool far greater equipment densities.

Liquid cooling is usually done at the rack level using the airflow from the servers to move the heat to a cooling unit where it’s removed by liquid, neutralizing heat at the source before it enters the room. Liquid cooling may also be done at the component level, where cooling liquid is delivered directly to individual components. Liquid cooling may also arrive in the form of portable units for cooling hot spots.

Liquid cooling options
Types of liquid cooling commonly used in data centers include:

  • Cabinet-door liquid cooling: With this method, cooling units are special cabinet doors that contain sealed tubes filled with chilled liquid. The liquid is circulated through the door to remove heat vented by equipment fans. Because liquid-cooled doors can replace standard cabinet doors, they’re the favored method for retrofitting liquid cooling into existing data centers.
  • Integrated liquid cooling: This consists of a specialized sealed cabinet that has channels for liquid cooling built into it to act as heat exchangers. Fans move hot air past the heat exchangers before sending the cooled air back to the servers. These cabinets are closed systems that release very little heat into the room.
  • Component-based liquid cooling: Some servers are preconfigured with integrated liquid-based cooling modules. After the servers are installed, liquid is circulated through the cooling modules.
  • Immersion cooling: This rather counterintuitive cooling method immerses servers in a non-conductive liquid, which is circulated to cool the servers.
  • Portable liquid cooling: These are small units that operate by blowing air across water-cooled coils. They can usually accept water from any source—including a nearby faucet. They’re generally plumbed with ordinary garden hoses and require no special skills to use. Portable cooling units are intended for emergency cooling rather than as a permanent solution.

Liquid cooling requires a shift in the way you think about cooling. Installation may require that you acquire a new skill set or hire a professional installer. However, the space savings and cost savings gained through liquid cooling more than make up for the inconvenience of installing a new cooling technology.

Not only does liquid cooling enable data centers to operate at far greater densities than conventional air cooling does, it gets rid of the infrastructure associated with air cooling, enabling you to eliminate hot/cold aisles and raised floors. Liquid cooling can support from 25 to 80% more equipment in the same footprint, resulting in significantly lower infrastructure costs.

Add to this the fact that cooling is often the majority of a data center’s operating cost, and it’s plain to see why an investment in the efficiency of liquid cooling goes right to the bottom line. collapse

Black Box Explains...PoE phantom power.

10BASE-T and 100BASE-TX Ethernet use only two pairs of wire in 4-pair CAT5/CAT5e/CAT6 cable, leaving the other two pairs free to transmit power for Power over Ethernet (PoE) applications. However,... more/see it nowGigabit Ethernet or 1000BASE-T uses all four pairs of wires, leaving no pairs free for power. So how can PoE work over Gigabit Ethernet?

The answer is through the use of phantom power—power sent over the same wire pairs used for data. When the same pair is used for both power and data, the power and data transmissions don’t interfere with each other. Because electricity and data function at opposite ends of the frequency spectrum, they can travel over the same cable. Electricity has a low frequency of 60 Hz or less, and data transmissions have frequencies that can range from 10 million to 100 million Hz.

10- and 100-Mbps PoE may also use phantom power. The 802.3af PoE standard for use with 10BASE-T and 100BASE-TX defines two methods of power transmission. In one method, called Alternative A, power and data are sent over the same pair. In the other method, called Alternative B, two wire pairs are used to transmit data, and the remaining two pairs are used for power. That there are two different PoE power-transmission schemes isn’t obvious to the casual user because PoE Powered Devices (PDs) are made to accept power in either format. collapse

Screw Dimensions

Find the right screw length for your cabinet or rack.

Types of Screws

Screw Dimensions

There are two basic kinds of screws used for cabinets and racks—panhead screws and countersunk screws—and... more/see it nowthey’re measured in two different ways. Because the standard way to measure is from the tip of the business end of the screw to where the screw rests on the material it’s fastened to, a panhead screw is measured to the bottom of its head, whereas a countersunk screw is measured to the top of its head.

Black Box Explains...SFP, SFP+, and XFP transceivers.

SFP, SFP+, and XFP are all terms for a type of transceiver that plugs into a special port on a switch or other network device to convert the port to... more/see it nowa copper or fiber interface. These compact transceivers replace the older, bulkier GBIC interface. Although these devices are available in copper, their most common use is to add fiber ports. Fiber options include multimode and single-mode fiber in a variety of wavelengths covering distances of up to 120 kilometers (about 75 miles), as well as WDM fiber, which uses two separate wavelengths to both send and receive data on a single fiber strand.

SFPs support speeds up to 4.25 Gbps and are generally used for Fast Ethernet or Gigabit Ethernet applications. The expanded SFP standard, SFP+, supports speeds of 10 Gbps or higher over fiber. XFP is a separate standard that also supports 10-Gbps speeds. The primary difference between SFP+ and the slightly older XFP standard is that SFP+ moves the chip for clock and data recovery into a line card on the host device. This makes an SFP+ smaller than an XFP, enabling greater port density.

Because all these compact transcievers are hot-swappable, there’s no need to shut down a switch to swap out a module—it’s easy to change interfaces on the fly for upgrades and maintenance.

Another characteristic shared by this group of transcievers is that they’re OSI Layer 1 devices—they’re transparent to data and do not examine or alter data in any way. Although they’re primarily used with Ethernet, they’re also compatible with uncommon or legacy standards such as Fibre Channel, ATM, SONET, or Token Ring.

Formats for SFP, SFP+, and XFP transceivers have been standardized by multisource agreements (MSAs) between manufacturers, so physical dimensions, connectors, and signaling are consistent and interchangeable. Be aware though that some major manufacturers, notably Cisco, sell network devices with slots that lock out transceivers from other vendors. collapse

Black Box Explains…Sizing a UPS

The power delivered by a UPS is usually expressed both in volt-amps (VA) and watts. There’s often confusion about what the difference is between these figures and how to use... more/see it nowthem to select a UPS.

VA is power voltage multiplied by amps. For instance, a device that draws 5 amps of 120-volt power has a VA of 600. Watts is a measure of the actual power used by the device. VA and watts may be the same. The formula for watts is often expressed as:

Watts = Volts x Amps

This formula would lead you to believe that a measurement of VA is equal to watts, and it’s true for DC power. AC power, however, can get complicated. Some AC devices have a VA that’s higher than watts. VA is the power a device seems to be consuming, while watts is the power it actually uses.

This requires an adjustment called a power factor, which is the ratio of watts to VA.

AC Watts = Volts x Amps x Power Factor


Watts/VA = Power Factor

Simple AC devices, such as light bulbs, typically have a power factor of 100% (which may also be expressed as 1), meaning that watts are equal to VA like they are with DC devices. Computers have had a much lower power factor, traditionally in the 60–70% range. This meant that only part of the power going into the computer was being used to do useful work.

Today, however, because of Energy Star requirements, virtually all computing devices are power factor corrected and have a power factor of more than 90%.

Which brings us around to how to use this information to select a UPS. The capacity of a UPS is defined as both VA and watts. Both should be above the power requirements of the connected equipment.

Because of the computers that had a low power factor, UPSs typically had a VA that was much higher than watts, for instance, 500 VA/300 watts. In this case, if you use the UPS with a power factor corrected device that requires 450 VA/400 watts, the UPS won’t provide enough wattage to support the device.

Although UPSs intended for enterprise use now normally have a high power factor, consumer-grade UPSs still typically have a lower power factor—sometimes even under 60%. When using these UPSs, size them by watts, not VA, to ensure that they can support connected equipment.

Fiber optic cable construction and types.

Multimode vs. single-mode
Multimode cable has a large-diameter core and multiple pathways of light. It is most commonly available in two core sizes: 50-micron and 62.5-micron.

Multimode fiber optic cable can... more/see it nowbe used for most general data and voice fiber applications such as adding segments to an existing network, and in smaller applications such as alarm systems and bringing fiber to the desktop. Both multimode cable cores use either LED or laser light sources.

Multimode 50-micron cable is recommended for premise applications?(backbone, horizontal, and intrabuilding connections). It should be considered for any new construction and for installations because it provides longer link lengths and/or higher speeds, particularly in the 850-nm wavelength, than 62.5-micron cable does.

Multimode cable commonly has an orange or aqua jacket; single-mode has yellow. Other colors are available for various applications and for identification purposes.

Single-mode cable has a small (8–10-micron) glass core and only one pathway of light. With only a single wavelength of light passing through its core, single-mode cable realigns the light toward the center of the core instead of simply bouncing it off the edge of the core as multimode does.

Single-mode cable provides 50 times more distance than multimode cable does. Consequently, single-mode cable is typically used in high-bandwidth applications and in long-haul network connections spread out over extended areas, including cable television and campus backbone applications. Telcos use it for connections between switching offices. Single-mode cable also provides higher bandwidth, so you can use a pair of single-mode fiber strands full-duplex at more than twice the throughput of multimode fiber.

Fiber optic cable consists of a core, cladding, coating, buffer strengthening fibers, and cable jacket.

The core is the physical medium that transports optical data signals from an attached light source to a receiving device. It is a single continuous strand of glass or plastic that’s measured (in microns) by the size of its outer diameter.

All fiber optic cable is sized according to its core’s outer diameter. The two multimode sizes most commonly available are 50 and 62.5 microns. Single-mode cores are generally less than 9 microns.

The cladding is a thin layer that surrounds the fiber core and serves as a boundary that contains the light waves and causes the refraction, enabling data to travel throughout the length of the fiber segment.

The coating is a layer of plastic that surrounds the core and cladding to reinforce the fiber core, help absorb shocks, and provide extra protection against excessive cable bends. These coatings are measured in microns (µ); the coating is 250µ and the buffer is 900µ.

Strengthening fibers help protect the core against crushing forces and excessive tension during installation. This material is generally Kevlar® yarn strands within the cable jacket.

The cable jacket is the outer layer of any cable. Most fiber optic cables have an orange jacket, although some types can have black, yellow, aqua or other color jackets. Various colors can be used to designate different applications within a network.

Simplex vs. duplex patch cables
Multimode and single-mode patch cables can be simplex or duplex.

Simplex has one fiber, while duplex zipcord has two fibers joined with a thin web. Simplex (also known as single strand) and duplex zipcord cables are tight-buffered and jacketed, with Kevlar strength members.

Because simplex fiber optic cable consists of only one fiber link, you should use it for applications that only require one-way data transfer. For instance, an interstate trucking scale that sends the weight of the truck to a monitoring station or an oil line monitor that sends data about oil flow to a central location.

Use duplex multimode or single-mode fiber optic cable for applications that require simultaneous, bidirectional data transfer. Workstations, fiber switches and servers, Ethernet switches, backbone ports, and similar hardware require duplex cable.

PVC (riser) vs. plenum-rated
PVC cable (also called riser-rated cable even though not all PVC cable is riser-rated) features an outer polyvinyl chloride jacket that gives off toxic fumes when it burns. It can be used for horizontal and vertical runs, but only if the building features a contained ventilation system. Plenum can replace PVC, but PVC cannot be used in plenum spaces.

“Riser-rated” means that the jacket is fire-resistant. However, it can still give off noxious fumes when overheated. The cable carries an OFNR rating and is not for use in plenums.

Plenum-jacketed cables have FEP, such as Teflon®, which emits less toxic fumes when it burns. A plenum is a space within the building designed for the movement of environmental air. In most office buildings, the space above the ceiling is used for the HVAC air return. If cable goes through that space, it must be “plenum-rated.”

Distribution-style vs. breakout-style
Distribution-style cables have several tight-buffered fibers bundled under the same jacket with Kevlar or fiberglass rod reinforcement. These cables are small in size and are typically used within a building for short, dry conduit runs, in either riser or plenum applications. The fibers can be directly terminated, but because the fibers are not individually reinforced, these cables need to be terminated inside a patch panel, junction box, fiber enclosure, or cabinet.

Breakout-style cables are made of several simplex cables bundled together, making a strong design that is larger than distribution cables. Breakout cables are suitable for riser and plenum applications.

Loose-tube vs. tight-buffered
Both loose-tube and tight-buffered cables contain some type of strengthening member, such as aramid yarn, stainless steel wire strands, or even gel-filled sleeves. But each is designed for very different environments.

Loose-tube cable is specifically designed for harsh outdoor environments. It protects the fiber core, cladding, and coating by enclosing everything within semi-rigid protective sleeves or tubes. Many loose-tube cables also have a water-resistant gel that surrounds the fibers. This gel helps protect them from moisture, so the cables are great for harsh, high-humidity environments where water or condensation can be a problem. The gel-filled tubes can also expand and contract with temperature changes. Gel-filled loose-tube cable is not the best choice for indoor applications.

Tight-buffered cable, in contrast, is optimized for indoor applications. Because it’s sturdier than loose-tube cable, it’s best suited for moderate-length LAN/WAN connections, or long indoor runs. It’s easier to install as well, because there’s no messy gel to clean up and it doesn’t require a fan-out kit for splicing or termination.

Indoor/outdoor cable
Indoor/outdoor cable uses dry-block technology to seal ruptures against moisture seepage and gel-filled buffer tubes to halt moisture migration. Comprised of a ripcord, core binder, a flame-retardant layer, overcoat, aramid yarn, and an outer jacket, it is designed for aerial, duct, tray, and riser applications.

Interlocking armored cable
This fiber cable is jacketed in aluminum interlocking armor so it can be run just about anywhere in a building. Ideal for harsh environments, it is rugged and rodent resistant. No conduit is needed, so it’s a labor- and money-saving alternative to using innerducts for fiber cable runs.

Outside-plant cable is used in direct burials. It delivers optimum performance in extreme conditions and is terminated within 50 feet of a building entrance. It blocks water and is rodent-resistant.

Interlocking armored cable is lightweight and flexible but also extraordinarily strong. It is ideal for out-of-the-way premise links.

Laser-optimized 10-Gigabit cable
Laser-optimized multimode fiber cable assemblies differ from standard multimode cable assemblies because they have graded refractive index profile fiber optic cable in each assembly. This means that the refractive index of the core glass decreases toward the outer cladding, so the paths of light towards the outer edge of the fiber travel quicker than the other paths. This increase in speed equalizes the travel time for both short and long light paths, ensuring accurate information transmission and receipt over much greater distances, up to 300 meters at 10 Gbps.

Laser-optimized multimode fiber cable is ideal for premise networking applications that include long distances. It is usually aqua colored.


  • Pdf Drawing... 
  • CAT5e Feed-Through Patch Panel (Shielded, 24-Port) Drawing
    PDF Drawing for the JPM804A-R2.
Results 1-10 of 2470 1 2 3 4 5 > >> 


Delivering superior technical support is our highest priority. Depending on the products or services we provide for you, please visit your appropriate support area.


You have added this item to your cart.

Black Box 1-877-877-2269 Black Box Network Services