Loading


Categories (x) > Cabinets & Racks > Cabinet Accessories > Cooling (x)

Results 1-10 of 29 1 2 3 > 

Black Box Explains…How to keep cabinets cool.

Networking equipment—especially servers—generates a lot of heat in a relatively small area. Today’s servers are smaller and have faster CPUs than ever. Because most of the power used by these... more/see it nowdevices is dissipated into the air as heat, they can really strain the cooling capacity of your data center. The components housed in a medium-sized data center can easily generate enough heat to heat a house in the dead of winter!

So cool you must, because when network components become hot, they're prone to failure and a shortened lifespan.

Damage caused by heat is not always immediately evident as a catastrophic meltdown—signs of heat damage include node crashes and hardware failures that can happen over a period of weeks or even months, leading to chronic downtime.

Computer rooms generally have special equipment such as high-capacity air conditioning and raised-floor cooling systems to meet their high cooling requirements. However, it's also important to ensure that individual cabinets used for network equipment provide adequate ventilation. Even if your data center is cool, the inside of a cabinet may overheat if air distribution is inadequate. Just cranking up the air conditioning is not the solution.

The temperature inside a cabinet is affected by many variables, including door perforations, cabinet size, and the types of components housed within the cabinet.

The most direct way to cool network equipment is to ensure adequate airflow. The goal is to ensure that every server, every router, every switch has the necessary amount of air no matter how high or low it is in the cabinet.

It takes a certain volume of air to cool a device to within its ideal temperature range. Equipment manufacturers provide very little guidance about how to do this; however, there are some very basic methods you can use to maximize the ventilation within your cabinets.

Open it up.
Most major server manufacturers recommend that the front and back cabinet doors have at least 63% open area for airflow. You can achieve this by either removing cabinet doors altogether or by buying cabinets that have perforated doors.

Because most servers, as well as other network devices, are equipped with internal fans, open or perforated doors may be the only ventilation you need as long as your data center has enough air conditioning to dissipate the heat load.

You may also want to choose cabinets with side panels to keep the air within each cabinet from mixing with hot air from an adjacent cabinet.

Equipment placement.
Don't overload the cabinet by trying to fit in too many servers—75% to 80% of capacity is about right. Leave at least 1U of space between rows of servers for front-to-back ventilation. Maintain at least a 1.5" clearance between equipment and the front and back of the cabinet. And finally, ensure all unused rack space is closed off with blank panels to prevent recirculation of warm air.

Fans and fan placement.
You can increase ventilation even more by installing fans to actively circulate air through cabinets. The most common cabinet fans are top-mounted fan panels that pull air from the bottom of the cabinet or through the doors. For spot cooling, use a fan or fan panel that mounts inside the cabinet.

For very tightly-packed cabinets, choose an enclosure blower—a specialized high-speed fan that mounts in the bottom of the cabinet to pull a column of cool air from the floor across the front of your servers or other equipment. An enclosure blower requires a solid or partially vented front door with adequate space—usually at least 4 inches—between the front of your equipment and the cabinet door for air movement.

When using fans to cool a cabinet, keep in mind that cooling the outside of a component doesn't necessarily cool its inside. The idea is to be sure that the air circulates where your equipment's air intake is. Also, beware of installing fans within the cabinets that work against the small fans in your equipment and overwhelm them.

Temperature monitoring.
To ensure that your components are operating within their approved temperature range, it’s important to monitor conditions within your cabinets.

The most direct method to monitor cabinet temperature is to put a thermometer into your cabinet and check it regularly. This simple and inexpensive method can work well for for small installations, but it does have its drawbacks—a cabinet thermometer can’t tell you what the temperature inside individual components is, it can’t raise the alarm if the temperature goes out of range, and it must be checked manually.

Another simple and inexpensive addition to a cabinet is a thermostat that automatically turns on a fan when the cabinet's temperature exceeds a predetermined limit.

Many network devices come with SNMP or IP-addressable internal temperature sensors to tell you what the internal temperature of the component is. This is the preferred temperature monitoring method because these sensors are inside your components where the temperature really counts. Plus you can monitor them from your desktop—they’ll send you an alert if there’s a problem.

There are also cabinet temperature sensors that can alert you over your network. These sensors are often built into another device such as a PDA but only monitor cabinet temperature, not the temperature inside individual devices. However, these sensors can be a valuable addition to your cooling plan, especially for older devices that don't have internal sensors.

The future of cabinet cooling.
Very high-density data centers filled with blade servers present an extreme cooling challenge, causing some IT managers to resort to liquid-cooled cabinets. They’re still fairly new and tend to make IT managers nervous at the prospect of liquids near electronics, but their high efficiency makes it likely that these liquid-cooled systems will become more prevalent.

It’s easy, really.
Keeping your data and server cabinets cool doesn't have to be complicated. Just remember not to overcrowd the cabinets, be sure to provide adequate ventilation, and always monitor conditions within your cabinets. collapse


Cold aisle containment.

Cold aisle containment (CAC) is a cooling method that increases cooling efficiency and reduces energy costs in data centers.

This cooling method relies on the fact that most network equipment... more/see it nowand servers are designed to cool themselves by drawing air in through the front and exhausting it out the rear. To implement cold aisle containment, rows of cabinets or racks are arranged facing each other to form aisles, and cool air is routed between the rows. Equipment takes the cool air in at the front of the cabinet and exhausts it out the back into the room.

To keep cool air from mixing with warm air, row ends are closed off with an air-flow barrier. This barrier can range from makeshift arrangements of plastic strips to doors made expressly for this purpose.

Because cold aisle containment concentrates cool air at the front of equipment where it’s most needed, it’s an exceptionally effective cooling method. Cold aisle containment significantly reduces energy costs, lowering power bills as well as reducing data centers’ carbon footprints. collapse

  • Manual... 
  • ServShield
    (Version 3)
 

Product Data Sheets (pdf)...Elite Cabinet and Rack Enclosures


Product Data Sheets (pdf)...NetRack


Product Data Sheets (pdf)...Low-Profile Secure Wallmount Cabinets Low-Profile Side Wallmount Cabinets


Black Box Explains...Power over Ethernet (PoE).

What is PoE?
The seemingly universal network connection, twisted-pair Ethernet cable, has another role to play, providing electrical power to low-wattage electrical devices. Power over Ethernet (PoE) was ratified by the... more/see it nowInstitute of Electrical and Electronic Engineers (IEEE) in June 2000 as the 802.3af-2003 standard. It defines the specifications for low-level power delivery—roughly 13 watts at 48 VDC—over twisted-pair Ethernet cable to PoE-enabled devices such as IP telephones, wireless access points, Web cameras, and audio speakers.

Recently, the basic 802.3af standard was joined by the IEEE 802.3at PoE standard (also called PoE+ or PoE plus), ratified on September 11, 2009, which supplies up to 25 watts to larger, more power-hungry devices. 802.3at is backwards compatible with 802.3af.

How does PoE work?
The way it works is simple. Ethernet cable that meets CAT5 (or better) standards consists of four twisted pairs of cable, and PoE sends power over these pairs to PoE-enabled devices. In one method, two wire pairs are used to transmit data, and the remaining two pairs are used for power. In the other method, power and data are sent over the same pair.

When the same pair is used for both power and data, the power and data transmissions don’t interfere with each other. Because electricity and data function at opposite ends of the frequency spectrum, they can travel over the same cable. Electricity has a low frequency of 60 Hz or less, and data transmissions have frequencies that can range from 10 million to 100 million Hz.

Basic structure.
There are two types of devices involved in PoE configurations: Power Sourcing Equipment (PSE) and Powered Devices (PD).

PSEs, which include end-span and mid-span devices, provide power to PDs over the Ethernet cable. An end-span device is often a PoE-enabled network switch that’s designed to supply power directly to the cable from each port. The setup would look something like this:

End-span device → Ethernet with power

A mid-span device is inserted between a non-PoE device and the network, and it supplies power from that juncture. Here is a rough schematic of that setup:

Non-PoE switch → Ethernet without PoE → Mid-span device → Ethernet with power

Power injectors, a third type of PSE, supply power to a specific point on the network while the other network segments remain without power.

PDs are pieces of equipment like surveillance cameras, sensors, wireless access points, and any other devices that operate on PoE.

PoE applications and benefits.

  • Use one set of twisted-pair wires for both data and low-wattage appliances.
  • In addition to the applications noted above, PoE also works well for video surveillance, building management, retail video kiosks, smart signs, vending machines, and retail point-of-information systems.
  • Save money by eliminating the need to run electrical wiring.
  • Easily move an appliance with minimal disruption.
  • If your LAN is protected from power failure by a UPS, the PoE devices connected to your LAN are also protected from power failure.

  • Converters and Scalers Selector
    PoE Standards PoE
    IEEE 802.3 af
    PoE IEEE 802.3 at
    Power available at powered device 12.95 W 25.5
    Maximum power delivered 15.40 W 34.20
    Voltage range at powred source 44.0-57.0 V 50.0-57.0 V
    Voltage range at powred device 37.0-57.0 42.5-57.0 V
    Maximum current 350 mA 600 mA
    Maximum cable resistance 20 ohms 12.5 ohms
    collapse

    • Video...Advanced Cooling for Data Centers

      Learn about today’s biggest data center challenges and find out how to cut cooling and power costs by up to 50%. This presentation discusses current options for data center cooling... more/see it nowand how passive liquid cooling installs easily with no downtime, is scalable, and saves on energy bills and space requirements. collapse

    • Visio Stencil Drawing... 
    • Visio Stencil
      Stencil Drawings
     

    Product Data Sheets (pdf)...Elite Series Data Cabinet Accessories

    Results 1-10 of 29 1 2 3 > 
    Close

    Support

    Delivering superior technical support is our highest priority. Depending on the products or services we provide for you, please visit your appropriate support area.



     

    You have added this item to your cart.

    Important message about your cart:

    You requested more of "" than the currently available. The quantity has been changed to them maximum quantity available. View your cart.

    Print
    Black Box 1-877-877-2269 Black Box Network Services